
IMPORTANT NOTICE

FOR APPLICATIONS PROGRAMMERS

REGARDING AftOS RULTI-PROCESSOR SYSTEMS

With the introduction of the AM-515 Intelligent Disk ControLLer and the
AM-350 InteLligent Input/Output ControLLer, AMOS has evoLved from a singLe
processor to a multi-processor environment.

Because of this change, you may have to change the way your programs handle
AMOS data structures. On a singLe processor system, it was sufficient
simpLy to Lock interrupts whiLe using AMOS system data structures or other
resources. However, locking interrupts only controLs the processor that is
locked if there is more than one processor, another processor could
access the same resource, potentiaLly causing serious system errors.

Therefore, semaphores have been added to AMOS to protect system resources.
Most of the data structure manipulation is done within AMOS itself by
monitor calls that make use df these semaphores. Because all appropriate
monitor calLs have been updated to use the semaphores, your programs wiLL
not be affected by these changes unLess your programs are directly
modifying AMOS data structures (something your programs SHOULD NOT do
unless specificalLy directed to do so by Alpha Micro documentation).

One type of data structure that is commonLy modified directly by
applications programs is the Terminal Control Block status word (TCB). Two
new monitor caLls have been added to AMOS to read (TRMRST) and write
(TRMWST) to this word. ALL applications programs that directly modify the
TCB shouLd be changed to use these new monitor caLls.

As an example of the type of problem that can occur if the new monitor
caLLs are not used, consider a case where the main processor is executing a
program that wants to toggle the echo bit in the TeB status word. At the
same time, the AM-350 processor wants to toggle the OIP bit in the same TeB
status word. Without semaphore protection, what happens will depend on the
timing of the modifications, with neither operation guaranteed to succeed.
However, if both processors use the new monitor calls, which acquire the
controlling semaphore before making any modification, both modifications
are guaranteed.

The AM-350 microcode currentLy contains a mechanism that prevents a
catastrophic result in the event the OIP bit of the TCB status word is
corrupted by a processor collision such as described above. But, this
mechanism creates a significant overhead for the AM-350 and wilL be removed
in the near future after time has been given for you to modify your
applications programs.

DSS-10237-00, Rev. AOO

Page 2

1.0 READING THE TERMINAL STATUS BITS (TRMRST)

The TRMRST call has been defined to allow reading of the terminal
status word without directly accessing restricted memory. The calling
format is:

TRMRST dst,{port}

where "dst" is a 16-bit
wi II be placed, and "port"
address of the terminal
read. If "port" is not
calling job will be used.

destination where the terminal status word
is an optional argument specifying the
definition block whose status you want to

specified, the terminal attached to the

2.0 WRITING THE TERMINAL STATUS BITS (TRMWST)

The TRMWST call has been defined to allow writing of the terminal
status word without directly accessing restricted memory. The calling
format is:

TRMWST src,{port}

where "src" is a 16-bit source field giving the status to be written
to the terminal status word, and "port" is an optional argument
specifying the address of the terminal definition block whose status
you want to write. If "port" is not specified, the terminal attached
to the calling job will be used.

DSS-10237-00, Rev. ADO

IMPORTANT NOTICE

FOR AlphaNET USERS

The Video Network software in AlphaNET 1.0 has a compatibility problem with
the new AM-2000 series systems.

If an AM-2000 series system attempts to LINK on to a video network, and NO
OTHER nodes are active on the network, the AM-2000 series system will lock
up. This means that a video network consisting of only AM-2000 series
systems will not function. If any systems other than AM-2000 series
systems are active on the network, you can add an AM-2000 system with no
trouble.

Because of new AM-1500 and AM-2000 series systems being released, the
AlphaNET driver program for these systems, VIDVME.NDV, is being released
with the Alpha Micro Operating Systems releases. This driver wiLL be
included on all operating system releases until the next release of
AlphaNET.

Here is a list of all the current driver programs released with AlphaNET:

VIDNDV.NDV - AM-1000 systems
VID100.NDV - AM-100/L systems
VIDVME.NDV - AM-1500 and AM-2000 systems

DSS-10238-00, Rev. AOO

SOFTVVARE MANUAL

AMOS/L VERSION 1.3
RELEASE NOTES

088-10125-00

REV. ADO

OSS-10125 Rev. ADO AMOS/L Version 1.2 Release Notes

FIRST EDITION

June 1985

REVISIONS INCORPORATED

REVISION I DATE

©1985 ALPHA MICROSYSTEMS

THE INFORMATION CONTAINED IN THIS MANUAL IS BELIEVED TO BE -ACCURATE AND
RELIABLE. HOWEVER, NO RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS OR USE
OF THIS INFORMATION IS ASSUMED BY ALPHA MICRO.

This document may contain references to products covered under the following U.S. Patent
Number(s): 4,530,048

THE FOLLOWING ARE TRADEMARKS OF ALPHA MICROSYSTEMS, SANTA ANA, CA 92799

AMOS
AlphaCALC
AlphaRJE

AM-100
AlphaFORTRAN
AlphaSERVE

AlphaACCOUNTING
AlphaPASCAL
AlphaWRITE

ALPHA MICROSYSTEMS
3501 Sunflower
P.O. Box 25059

Santa Ana, Ca 92799

AlphaBASIC
Alpha Micro

TABLE OF CONTENTS

1.0 SPECIAL NOTES FOR ALPHAWRITE AND ALPHACALC USERS 1
1 .1 Task Manager Print Spooler Support . 2
1.2 New AlphaWRITE Features . 3
1.3 Compatibility Information . 3
1.4 For Installation Information. 3

2.0 IMPORTANT COMPATIBILITY NOTES.. 4
2.1 Incompatibility of COPY, DIR, ERASE, and RENAME. 4
2.2 AlphaBASIC and Assembly Language Programs. 4
2.3 AlphaBASE Executive Data Manager. 4
2.4 New Memory Requirements. 4
2.5 Standardization of Terminal Feature Access Codes (TCRT Codes). 4
2.6 LOKSER and the Task Manager. 5
2.7 Print Spooler Compatibility. 5
2.8 New Command Line Processor . 5
2.9 Changes to the System Initialization Command File 5

3.0 NEW FEATURES FOR AMOS/L 1.3. 6
3.1 The Disk Cache Buffer Manager . 7
3.2 A New Print Spooler. 7

3.2.1 Setting Up the Spooler. 8
3.2.2 New Printing Options . 8
3.2.3 Mixing Print Spoolers . 9
3.2.4 Compatibility with Other Software . 9

3.3 Verifying Proper Copying of Files (VERIFY). 10
3.4 User-definable Ersatz Device Specifications. 10
3.5 New Features of the SET Command . 11

3.5.1 Translating Terminal Function Keys . 11
3.5.2 QIC 24 and QIC 11 Support for 1/4" Streaming Tape Drives. 11
3.5.3 User-definable AMOS Prompt Symbol. 12

3.6 New AlphaBASIC XCALL Subroutines. 12
3.7 New Monitor Calls and System Library Routines. 12
3.8 Language Definition Files 13
3.9 New Option for DSKANA . 14

4.0 CHANGES IN MEMORY REQUiREMENTS............................. 14

5.0 INFORMATION ON TERMINALS. 15
5.1 Note on Function Key Translation Files . 16
5.2 Terminal Driver Source Programs . 16

OS8-10125-00, Rev. AOO

6.0 NEW DOCUMENTATION. 17

/

7.0 THE RELEASE MECHANiSM.. 17

8.0 PROGRAMS INCLUDED WITH THE AMOS/L 1.3 RELEASE............. 18

9.0 INSTALLATION INFORMATION FOR UPGRADING TO AMOS/L 1.3 18
9.1 The AMOS Installation Program. 18
9.2 The AMOS/l1.3 Monitor File. 19
9.3 General Installation Instructions. 19
9.4 Bringing Up the AMOS/L 1.3 Monitor. 19

9.4.1 Copying the AMOS/L 1.3 Monitor File 20
9.4.2 Building an Executable Monitor. 20
9.4.3 Additions to the System Initialization Command File. 21
9.4.4 Testing the AMOS/L 1.3 Monitor. 21
9.4.5 Making the AMOS/L 1.3 Monitor the Default Monitor. 22

9.5 Bringing Up the Remainder of the AMOS/L 1.3 Release. 22
9.6 Bringing Up lOKSER . 25
9.7 Bringing Up the Disk Cache Buffer Manager System. 25

10.0 ELS SYSTEM SUPPORT. 25
10.1 ELS System Commands. 25
10.2 AMOS/L Commands Not Supported on the ELS System. 28

11.0 IMPORTANT INFORMATION FOR AM-1000 DISK
SUBSYSTEM OWNERS. 28

INDEX. 1-1

ii OSS-10125-00, Rev. AOO

AMOS/L 1.3 RELEASE NOTES

This document contains information on the AMOS/L Version 1.3 Software Release. The para
graphs below discuss modifications made to the AMOS/L Software for this release.

IMPORTANT NOTE: If you are going to install AMOS/L Version 1.3 on your
system, it is most important that you first read Section 9.0 for installation
instructions.

That section also contains information on the AMOS Installation Program and its
loader program for installing the operating system software on a brand new
system.

1.0 SPECIAL NOTES FOR ALPHAWRITE AND ALPHACALC USERS

This release contains AlphaWRITE and AlphaCALC files that allow these software
packages to work with the new Task Manager print spooler. In order for AlphaWRITE
and AlphaCALC to function on your system if these AlphaCALC and AlphaWRITE files
are installed, you must have the proper versions of AlphaWRITE and AlphaCALC. The
earliest versions of these products that will work under AMOS/L 1.3 are:

AlphaWRITE 1.1(174) or AlphaWRITE 1.1A(174)

AlphaCALC 1.1(134)

If you have an earlier version of these software packages, you must update
AlphaWRITE and/or AlphaCALC to the latest version, and then install AMOS/L 1.3.

If you have versions of these software packages later than those listed above, but you
don't want to install the latest versions contained on the 1.3 release, you must:

a. Make a backup of your current system.

b. Install AMOS/L 1.3.

c. Re-install AlphaWRITE and AlphaCALC from your system backup to overwrite
the AlphaWRITE and AlphaCALC files that were included on the AMOS/L 1.3
release. Consult the documentation that accompanied AlphaWRITE and
AlphaCALC for the location on the System Disk of the files that make up those
products.

Installing AMOS/L 1.3 will not require that you re-enter the Product Installation Code
for AlphaCALC and AlphaWRITE. In the case of AlphaCALC, only those files
AlphaCALC needs to access the new print spooler have been supplied; this is
AlphaCALC's only new capability. In the case of AlphaWRITE, there are additional
files included to support enhanced error reporting as well as the new spooler.

088-10125-00, Rev. AOO

Page 2 AMOS/L 1.3 RELEASE NOTES

Once AMOS/L 1.3 is installed on a system that contains AlphaWRITE 1.1(174)
and AlphaCALC 1.1(134), those versions of the software products become
AlphaWRITE 1.1A(174)-n and AlphaCALC 1.1(134)-n.

Special Note to Dealers

There are two ways you can update your master copies of AlphaWRITE
and AlphaCALC. First, you can install the entire AMOS/L 1.3 release
which contains the specific AlphaWRITE and AlphaCALC modules that
have been updated. You can make a new master of AlphaWRITE by
copying DSKO:*. *[7,12] and DSKO:WRITE.L1T[1,4] to another medium. To
make a new master of AlphaCALC, copy DSKO: * . * [7,13] and
DSKO:CALC.LlT[1,4] to another medium. Or, you can order complete new
versions of AlphaWRITE and AlphaCALC from Alpha Micro. This will
ensure that your master copies contain the most current versions of all
AlphaWRITE and AlphaCALC modules.

If you do not have AlphaWRITE on your system, you will probably want to erase these
files after you have installed AMOS/L 1.3:

DSKO:WRITE. L1T[1,4]

DSKO:*. *[7,12]

If you do not have AlphaCALC on your system, you will probably want to erase these
files after you have installed AMOS/L 1.3:

DSKO:CALC. LlT[1,4]

DSKO:*. *[7,13]

If you do not have either AlphaWRITE or AlphaCALC on your system, but have a
master copy from an older release, DO NOT install AlphaWRITE or AlphaCALC from
these masters on an AMOS/L 1.3 system! Doing this will write over whatever current
AlphaWRITE and AlphaCALC files you may still have on your 1.3 system. To safe
guard these current files, copy them to another account before you attempt restoring
AlphaWRITE and AlphaCALC. You can then copy the 1.3 files back to the correct
accounts and have the latest versions of AlphaWRITE and AlphaCALC on your
system.

1.1 Task Manager Print Spooler Support

June, 1985

AlphaWRITE 1.1A and AlphaCALC 1.1 support both the new Task Manager print
spooler available with AMOS/L 1.3, and also the original print spooler. There are, how
ever, two things you need to be aware of in this regard.

First, if you have both spoolers active on your system at the same time, an individual
printer should NOT be connected to both spoolers at the same time. Two print
requests to the same printer via the different spoolers will result in merged output.

AMOS/L 1.3 RELEASE NOTES Page 3

And second, if you have both the original spooler and the new Task Manager spooler
active on your system at the same .time (with separate printers assigned to each),
AlphaWRITE and AlphaCALC both recognize only the original spooler. In short,
AlphaWRITE and AlphaCALC support the new Task Manager print spooler as long as
it's the ONLY spooler on your system.

See Section 3.2 for further information on the new Task Manager print spooler.

1.2 New AlphaWRITE Features

When you access AlphaWRITE document files, AlphaWRITE uses a disk device for
its permanent storage and memory for its temporary storage. AlphaWRITE reads
information from the disk device and places it in memory. It also writes information
from memory back to the disk device. For example, the edit command tells
AlphaWRITE to read a document into memory from the disk device and the finish
command tells AlphaWRITE to write the document from memory back onto the disk.

As AlphaWRITE reads or writes information to or from the disk, it is possible for an
error to occur in the process. If this happens, you're notified with an error message,
something like this:

?File error - (message) - * * * OOCNAM.WRT * *

[Press any key to return to the Main Menu]

where (message) describes the type of disk device error and *** OOCNAM.WRT ***
represents the name of the AlphaWRITE document where the error occurred.

The first thing to do is write down the message and the AlphaWRITE document name
displayed on your screen. Then give this information to your System Operator. When
you've done this, you can press any key to return to the AlphaWRITE Main Menu.

When the display returns to the Main Menu, AlphaWRITE has performed the equiva
lent of the quit command, abandoning all changes performed on the document you
were working on when the error occurred.

1.3 Compatability Information

AlphaWRITE Version 1.1A can read and edit all documents that were created under
earlier versions of AlphaWRITE. However, documents created by AlphaWRITE 1.1A
can only be read by AlphaWRITE 1.1 or 1.1A.

AlphaCALC version 1.1 can also read and edit all documents that were created under
earlier versions of AlphaCALC; however, earlier versions of AlphaCALC cannot read or
edit version 1.1 documents.

1.4 For Installation Information

Complete installation instructions for AlphaWRITE are provided in ')\ppendix C -
AlphaWRITE Installation Summary" of Addendum #1, AlphaWRITE Operator's Guide,
OSS-1 01 00-00, Rev. AOO.

OS5-10125-00, Rev. AOO

Page 4 AMOS/L 1.3 RELEASE NOTES

You can find complete installation instructions for AlphaCALC in '~ppendix E -
AlphaCALC Installation Summary" of Addendum #1, AlphaCALC Operator's Guide,
DSS-10117-00, Rev. AOO.

2.0 IMPORTANT COMPATIBILITY NOTES

Please read this section carefully before installing AMOS/L 1.3.

This section contains important compatibility information you should be aware of if
you are upgrading from a previous AMOS/L release to AMOS/L Version 1.3.

2.1 Incompatibility of COPY, DIR, ERASE, and RENAME

The AMOS/L 1.3 versions of the COPY, DIR, ERASE, and RENAME programs will not
work under earlier monitor versions since they use the CMDLlN processor (explained
in section 2.6 below). This should not cause you any problems if you follow the instal
lation instructions exactly - just be sure your monitor version is 1.3 before replacing
the old versions of these command programs with the new ones.

2.2 AlphaBASIC and Assembly Language Programs

All assembly language and AlphaBASIC programs that were assembled/compiled
under AMOS/L release 1.2 and 1.2A will run (without re-assembling/compiling) under
AMOS/L 1.3.

2.3 AlphaBASE Executive Data Manager

Only AlphaBASE version 4.8B will work with AMOS/L 1.3. If you have an earlier ver
sion of AlphaBASE, you must upgrade to version 4.8B.

2.4 New Memory Requirements

Memory requirements are greater for the AMOS/L 1.3 Release than for prior AMOS/L
releases. Refer to Section 4.0, "Memory Requirements," for more information.

2.5 Standardization of Terminal Feature Access Codes (TeRT Codes)

June. 1985

The AMOS/L 1.3 Release is the first major phase of a plan designed to standardize
the use of TCRT calls and codes on AMOS/L systems. The following actions were
taken to accomplish this goal:

1. A large number of TCRT codes were added to the monitor to enhance your
ability to make use of special terminal display and output features.

2. We reserved ALL unassigned TCRT codes for future use in order to manage
and control the use of TCRT codes.

The intent of these actions, which were negotiated with International Alpha Micro
Dealer's Association (IAMDA) Standards Advisory Council, is to meet your real needs
for terminal service and at the same time maintain enough control to prevent the

AMOS/L 1.3 RELEASE NOTES PageS

confusion caused by multiple programming approaches. It was this very confusion
that prompted requests for standardization.

Of course, we don't want to stifle the creativity of those who develop software for the
Alpha Micro computer. If you find you have a need for a TCRT function not currently
defined, please contact the Vendor Software Analysis group at Alpha Micro with your
request. If your request fits in with the needs and direction of other Alpha Micro users,
we will reserve a TCRT code for your purpose.

2.6 LOKSER and the Task Manager

When you have the Task Manager installed on your system, you can adjust the num
ber of blocks in each queue file by using the MAKOUE command. If you find that a
queue file has too few (or too many) records to accomplish your tasks, you can re
create the queue file by running MAKOUE again, and specifying the same name (be
sure that you are in the correct account!). When you re-create the queue file, specify
more (or fewer) records. The next time you reboot your system, the queue file will be
adjusted to the new size.

This procedure involves a little more work if you have the LOKSER file-locking system
running on your computer. Since the LOKSER system locks all of the Task Manager's
queue files (to prevent other programs and processes from harming the queue
entries), you (or the MAKOUE program) will not be able to erase the version of the
queue file that is on the disk.

1. First, make sure the Task Manager isn't busy.

2. Then use the LOKUTL command described in the AMOSIL LOKSER User's
Manual, OSS-10034-00, to unlock the queue file whose size you want to adjust.

3. Now you can use the MAKOUE command at AMOS/L command level to
change the size of the queue file.

4. When it is convenient for other users on your system, reboot.

After you reboot your system, the queue file will be expanded or contracted to the size
you selected.

2.7 Print Spooler Compatibility

The addition of a new print spooler to the AMOS/L system (the Task Manager print
spooler) raises some compatibility issues between the old and new spoolers. See
Section 3.2 for more information.

2.8 New Command Line Processor

Many commands on past AMOS/L releases used the file SCNWLO.SYS for command
line and wildcard processing. As of AMOS/L 1.3, some of the AMOS/L commands
have been converted to use a new command line processor, CMOLlN.SYS.

088-10125-00, Rev. AOO

Page 6 AMOS/L 1.3 RELEASE NOTES

Although SCNWLD and CMDUN are internal Alpha Micro software modules, and
cannot be accessed by user programs, we mention the new CMDUN program for the
following reason: If you have warm boot monitors (generated using the WRMGEN
command) or command files that load SCNWLD.SYS into memory so that command
lines can be processed, be aware that you will now have to change those warm boot
monitors and command files to load in CMDUN.SYS as well.

Alpha Micro intends to eventually change all software over to using CMDUN to proc
ess command lines. Until that time, however, some software will continue to use
SCNWLD and some CMDLlN.

The commands which now use CMDLlN are:

COpy DIR ERASE PRNT RENAME

In addition, the Task Manager also uses CMDLlN. All the remaining commands still
use SCNWLD, including the file backup commands.

It is most important that both CMDUN and SCNWLD be available for the use of the
AMOS/L commands on your system since without the proper command line proces
sor, the AMOS/L commands will not function. (See Section 4.0 for information on the
memory requirements of CMDLlN.SYS.)

2.9 Changes to the System Initialization Command File

Several changes to the system initialization command file, AMOSL.INI, must be made
to bring up the AMOS/L 1.3 release correctly. See Section 9.0 for more information.

3.0 NEW FEATURES FOR AMOS/L 1.3

June, 1985

Below is a list of the new features available with AMOS/L 1.3. See the sections that
follow for more information on these features.

• Optional Disk Cache Buffer Manager system potentially offers dramatic
speed increase in system operation.

• A new print spooler that runs under control of the Task Manager, offering
new printing features and resource-efficient spooler set up. One of the
many features of the spooler is that the print queue is disk-resident
(instead of being maintained in memory), which means that interrupted
printouts can be restarted even if the system is reset.

• A new program, VERIFY, makes sure that the files contained in a soft
ware release have been properly copied onto a system.

• User-definable ersatz device and file specifications.

• New features for the SET command:

• User-programmable terminal function keys.

• User-definable AMOS prompt symbol.

AMOS/L 1.3 RELEASE NOTES Page 7

• The ability to select OIC 24 or OIC 11 format for those streaming
tape drives that support both formats.

• New AiphaBA51C XCALL subroutines, offering several new input process
ing and formatting features and terminal handling abilities.

• New monitor calls and system library routines offering the ability to inter
face with several new monitor systems, such as the Intertask Communi
cations 5ystem, the Disk Cache Buffer Manager, and the Language Defi
nition system.

• Language definition files, providing the first step of a customized lan
guage definition and message system in support of foreign users.

• A new option for 05KANA preventing the rewriting of the bitmap when a
disk error occurs.

3.1 The Disk Cache Buffer Manager

The Disk Cache Buffer Manager improves the performance of your system by
decreasing disk accesses. The exact amount of added speed will depend on the con
figuration of the system, but it does produce a noticeable improvement for most sys
tems, and systems on which multiple users use the same files can see impressive
improvement in system speed. The Disk Cache can be tailored to give you maximum
efficiency for the way files are used on your system. "The Disk Cache Buffer Man
ager" document in the AMOSIL System Operator's Guide, 055-10002-00, Revisions
A05 and later, contains complete information on Disk Cacheing. You will also want to
refer to the CACHE reference sheet in the AMOSIL System Commands Reference
Manual, 055-10004-00, Revisions A06 and later.

3.2 A New Print Spooler

Alpha Micro has developed a new print spooler that runs under control of the powerful
Task Manager system. This new print spooler offers the following advantages: easier
and more efficient spooler set up for multiple printers and new features available for
printing files.

IMPORTANT NOTE

The Task Manager print spooler will eventually become the only print
spooler that Alpha Micro will support. Therefore, you should begin to
change over any programs you have written in assembly language that
directly access the "old" print spooler. We recommend that all future
assembly language programs access the Task Manager print spooler
using the assembly language system library routines provided for that
purpose that are included with the AM05/L 1.3 Release.

5ee the AMOSIL Monitor Galls manual, 055-10003-00, Revisions A03
and later, for information on the print queue system library routines.

OS5-10125-00, Rev. AOO

Page 8 AMOS/L 1.3 RELEASE NOTES

3.2.1 Setting Up the Spooler

Existing bootable AMOS/L systems are shipped with system initialization command
files configured to allow you to set up the old print spooler. If you wish to enable the
new Task Manager print spooler on your system, you will need to modify your system
initialization command file, AMOSL.INI, to bring up the Task Manager and to bring up
the new print spooler under the control of the Task Manager. This process is consider
ably different than the method used to set up the old print spooler.

For information on setting up the Task Manager print spooler; refer to the document
"Setting Up the Task Manager Print Spooler" in the AMOSIL System Operator's Guide,
OSS-10002-00, Revisions A05 and later. In addition, you may wish to refer to the
troubleshooting procedures described in the AMOSIL Task Manager User's Manual,
OSS-1 0010-00.

The older print spooler requires defining a separate spooler system for each printer,
thus tying up a separate job, separate memory allocations, and a separate print
queue for each printer on the system.

The Task Manager spooler makes more efficient use of system resources because
only one queue for all printers on the system needs to be established, rather than one
queue per printer. Because this queue is disk-based rather than residing in memory, it
offers more control over how and when files are printed.

Instead of one job per spooler being tied up, all printing runs under the control of a
single Task Manager job which can also be used for a myriad of other tasks besides
controlling the print spooler.

3.2.2 New Printing Options

June, 1985

New printing options are available under the Task Manager print spooler. NOTE: Since
both the Task Manager and the older print spooler can co-exist on the same system
(see Section 3.2.3), you must use two different commands to print files with both print
spooler systems: The PRNT command sends print requests to the Task Manager print
spooler and the PRINT command sends print requests to the old print spooler.

For information on the PRNT and PRINT commands, see the PRNT and PRINT refer
ence sheets in the AMOSIL System Commands Reference Manual, DSS-10004-00,
Revisions A06 and later.

Some of the new options you can select with the Task Manager print spooler PRNT
command are:

IAFTER The file will be printed after a specified date and time.

I/SEQUENCE Allows you to change the printing instructions for any file that is waiting
in the queue to be printed. (Note that this option is preceded by TWO
slashes.)

/SUSPEND Allows you to suspend the printing of a file without taking it out of the
queue.

AMOS/L 1.3 RELEASE NOTES Page 9

IREVIVE Allows you to re-start a suspended file.'

IRESTART The file will remain in the queue even if the system halts operation. If a
file is printing when the system halts, the file will start printing again at
the interrupted page after the system reboots. NOTE: Several printers
all printing files that use this option are likely to slow the system down
somewhat.

IPRIORITY Allows you to set priorities for files to be printed.

ILiMIT Safeguards against endless form-feed printing caused by an error in
the file.

/INFORM Sends a message to you when your file is done printing.

ISTART Starts printing at a specified page number.

IFINISH Stops printing at a specified page number.

ION or IOFF Connects/Disconnects a printer from access (for the Operator Job
only).

3.2.3 Mixing Print Spoolers

You can have both the old print spooler and the Task Manager print spooler defined
on your system if you wish since a different print command, PRNT, has been defined
to work with the Task Manager print spooler. (You will continue to use the PRINT com
mand to access the old print spooler.)

WARNING

DO NOT CONNECT A PRINTER TO BOTH SPOOLERS AT THE SAME
TIME! If you do have a need to use both spoolers (for example, you may
want to take advantage of the features of the new spooler but some of
your programs are not yet converted to access it), make sure each printer
is connected to only one of the spoolers. Otherwise, it's possible for two
people to submit a file to be printed, each through a different spooler
connected to the same printer. The two files will both print at the same
time, and the printout will be garbled.

3.2.4 Compatibility with Other Software

Assembly language programs that directly access the original print spooler should be
changed to make use of the new Task Manager print spooler, since the former print
spooler will eventually not be supported by Alpha Micro. See the "Important Note" in
Section 3.2 for information on accessing the Task Manager print spooler from within
assembly language programs.

Current versions of the programming languages available from Alpha Micro at this time
support both the original and the new print spoolers (AlphaBASIC, Alpha Micro
FORTRAN, and assembly language) with the exception of AlphaPASCAL (the structure

055·10125-00, Rev. AOO

Page 10 AMOS/L 1.3 RELEASE NOTES

of PASCAL limits access to printers). If/you have several printers attached to your sys
tem and plan to use both spoolers at the same time, please note that the programming
languages mentioned will recognize only the new spooler. If you have only the original
spooler or only the new spooler defined on your system, the programming languages
will recognize whichever spooler is available.

If you have Alpha Micro FORTRAN 77 on your system, you will need to copy a special
spooler file after you have installed AMOS/L 1.3 on your system. The files for
FORTRAN 77 are in account OSKO: [7,10]; and two files, SP0L13.SUB and
SPOL20.SUB, allow you to adapt the spooler to your current FORTRAN release. Log
into DSKO:[7,10], and if you are using version 1.3 of FORTRAN, type:

.COpy SPOOL.SUB = SPOL13.SUB

If you have version 2.0 of FORTRAN, type:

.COPY SPOOL.SUB == SPOL20.SUB

Of course, if you don't have FORTRAN 77 on your system, you can erase both
SPOL 13.SUB and SPOL20.SUB from DSKO:[7,10].

For other programming languages, see the documentation that accompanied them for
the most recent information concerning spooler support for those languages.

See Section 1.0, above, for important information for AlphaWRITE and AlphaCALC
users concerning spooler compatibility information.

3.3 Verifying Proper Copying of Files (VERIFY)

VERIFY is a program that you can run after installing a new software release to verify
that the files that you received were the correct version, and that they were copied
correctly. For example, you might want to use VERIFY to check that all files on your
AMOS/L 1.3 release were transferred correctly to your system.

See the VERIFY reference sheet in the AMOSIL System Commands Reference Man
ua/, OSS-10004-00, Revisions A06 and later, for more information on VERIFY.

3.4 User-definable Ersatz Device Specifications

June, 1985

The ersatz device and file specifications that were a "built-in" part of the system
(such as OPR: and BAS:) are now included in a file called ERSATZ.lNI. You may edit
this file and define your own ersatz names. NOTE: We do not recommend that you
redefine the standard ersatz devices (e.g., BAS: for OSKO:[7,6]) to new names, since
this could cause a lot of confusion for users of your system.

The next step is to make sure that the system initialization command file installs the
ERSATZ.lNI file into the monitor so that you can make use of the ersatz device and
file names.

AMOS/L 1.3 RELEASE NOTES Page 11

For information on installing the ERSATZ.INI file, see Section 9.0 below, and the doc
ument "The System Initialization Command File," in the AMOSIL System Operator's
Guide, OSS-1 0002-00 , Revisions A05 and later. After your system is up and running
under AMOS/L 1.3 you can type:

.ER8ATZ

to find out what ersatz devices and files are already defined. For complete information
on the ERSATZ command and its capabilities, refer to the ER8ATZ reference sheet in
the AMOSIL System Commands Reference Manual, 088-10004-00, Revisions AOS
and later.

3.5 New Features of the SET Command

The 8ET Command offers several new terminal display options as well as format
control for certain models of the 1/4" streaming tape drives. The sections below dis
cuss these options. For more information on these SET command features, refer to
the SET reference sheet in the AMOSIL System Commands Reference Manual,
OS8-10004-00, Revisions AOS and later:

3.5.1 Translating Terminal Function Keys

The SET program now provides a way to simulate programming the function keys on
your terminal by building a module residing in user memory that "filters" terminal
input, translating specific key sequences into characters or codes defined by you. For
example, you may define function key F1 on your terminal to enter the command
sequence "8YSTAT/N[RET]."

This method allows you to simulate programmable function keys even for those termi
nals that do not contain programmable function keys, since you may redefine the
output of any key that sends a multiple character sequence. This programming does
not interfere with the function key's normal functions when within AlphaWRITE,
AlphaCALC, or AlphaVUE; these programs override the SET command function key
programming.

Refer to the document "Function Key Translation;' in the AMOSIL System Operator's
Guide, 08S-10002-00, Revisions A05 and later.

3.5.2 Qle 24 and Qle 11 Support for 1/4" Streaming Tape Drives

The SET command now allows you to set either OIC 11 or OIC 24 format for a 1/4"
streaming tape drive that supports both formats. Alpha Micro supports two types of
1/4" streaming tape drives that are identified by their size in relation to floppy disk
drives: 5 1/4 inch tape drives and 8 inch drives. All of the 5 1/4 inch tape drives and
some of the 8 inch tape drives support only one or the other of these two formats, but
some of the 8 inch streaming tape drives support both formats.

088-10125-00, Rev. AOO

Page 12 AMOS/L 1.3 RELEASE NOTES

For information on identifying which type of format your streaming tape drive sup
ports, refer to the document "Important Compatibility Note for 1/4" Streaming Tape
Drive Users," in the AMOSIL System Operator's Guide, OSS-1oo02-00, Revisions A05
and later.

3.5.3 User-definable AMOS Prompt Symbol

The SET program now allows you to set the AMOS prompt symbol (for your job only).
When the system boots, you still receive the default AMOS prompt symbol, a period.
USing the SET program, you can define a prompt of up to 19 characters in length, like
this:

.SET PROMPT PLAY IT AGAIN, SAM>

3.6 New AlphaBASIC XCALL Subroutines

The SPOOL subroutine was modified to work with both the new Task Manager print
spooler and the old print spooler. (NOTE, however; that you will not be able to specify
the new spooler options when using SPOOL.) In addition, we added the following new
subroutines:

ACCEPT - Gets arbitrary data from the terminal
ECHO - Turns on terminal echo mode
GTLANG - Returns language characteristics
10TIM - Converts time from a string to internal format
NOECHO - Turns off terminal echo mode
OOTIM - Converts time from internal format to a string
RENAME - Renames an AMOS file .
SLEEP - Puts the terminal to sleep for a specified period
STRIP - Removes trailing blanks from a string
TRMCHR - Returns terminal characteristics

For more information on these subroutines, refer to the AMOSIL AlphaBASIC XCALL
Subroutine User's Manual, OSS-10122-00.

3.7 New Monitor Calls and System Library Routines

June,1985

The following system library routines were added, which perform a variety of miscella
neous functions:

$KILPF - Kill a file entry in Task Manager spooler queue
$NETEO - Convert a CPU specification to an Ersatz name
$SPLFL - Queue up a file to the spooler
$STFRM - Set forms type on a Task Manager spooled printer
$SYSIO - Get a symbolic system name for a network CPU
$UPOSW - Update switches in a Task Manager spooler entry
$YESNO - Accept and decipher "YES/NO" responses

AMOS/L 1.3 RELEASE NOTES Page 13

New monitor calls and system library routines were defined that allow your assembly
language programs to access the Task Manager print spooler queue, the Intertask
Communications system, the language definition system (GTLANG), and the Disk
Cache Buffer Manager system. New calls were also defined to return the characteris
tics of a device (DEVCHR), to perform generalized file specification output (OFILE),
and FSPEC was changed to handle ersatz device and file names.

Several new fields and flags were added to the job scheduling and system communi
cation area.

New terminal feature access codes (TCRT codes) were added to the monitor to sup
port terminal features. Note that as of the AMOS/L 1.3 release, Alpha Micro now
reserves all unassigned TCRT codes for future use. (See the compatibility note in
Section 2.3 for more information on this policy.) Along with the TCRT codes, we also
added new terminal support flags.

For more information on these topics, refer to the AMOSIL Monitor Calls manual,
DSS-10003-00, Revisions A03 and later.

3.8 Language Definition Files

Language definition files have been developed as the first step of a system designed
primarily as a support feature for our international distributors, allowing them ulti
mately to customize messages and user input to reflect the native language of the
system users.

Since this is a "staging" release for this system, all features planned for the future
have not yet been implemented.

As of this release, the only user language supported on the system is American
English. The only language definition file supplied is ENGLSH.LDF, and the only sys
tem message file supplied is SYSMSG.USA.

The SYSMSG.USA file contains all of the AMOS system messages written in Ameri
can English. If this file is not properly located in DSKO:[1,4], and not loaded into sys
tem memory via the SYSTEM command in the system initialization command file, all
of the standard system messages will display only as code numbers. This could be
very confusing, so note carefully the presence of this file during the installation proce
dures in Section 9.0! Error message codes are documented in Appendix E of the
AMOSIL System Operator's Guide, DSS-1 0002-00 , Rev. AOS.

IMPORTANT NOTE: You cannot change the contents of the SYSMSG.USA
file at this time.

The ENGLlSH.LDF file gives input and output language definition rules used by the
monitor. You will load this file into the system monitor when you use the MONGEN
command to generate your AMOS/L 1.3 monitor. (See Section 9.0)

055-10125-00, Rev. AOO

Page 14 AMOS/L 1.3 RELEASE NOTES

Provisions have been made for assembly language programmers to create their own
.LDF files. See the AMos/L Monitor Calls manual, DSS·1 0003-00 , Revisions A03 and
later, for information on the language definition system for assembly language
programmers.

3.9 New Option for DSKANA

DSKANA can now be run with a IC option, which checks the disk for errors but does
not rewrite the bitmap. You may often use the IC option with the IL output file option.
This combination of options is useful especially when you are performing automated
overnight backup operations and you wish to be alerted the next morning to possible
problems but do not wish to rewrite the bitmap.

Here is a sample scenario that illustrates why the IC option is sometimes a wise
choice: If a user forgets to exit a text editor program before leaving at night (thus
leaving a file open), when the automatic backup procedure runs DSKANA on that disk
and if the IC option is NOT used, the incomplete bitmap (incomplete because it does
not take the open file into account) gets written out to the disk. Then, when the user
exits the text editor the next morning (closing the file that the system no longer
remembers is open), a disk bitmap error occurs, corrupting the data on the disk.

4.0 CHANGES IN MEMORY REQUIREMENTS

June,1985

The AMOS/L 1.3 monitor is approximately 27.6 kilobytes - about 400 bytes larger than
the AMOS/L 1.2 monitor. In addition, the Job Control Block is larger. This means that
the 1.3 monitor will be about 78 bytes larger for every job defined on the system. Note
that AMOS/L Version 1.3 requires that you load the SYSMSG.USA system message
file into system memory, which requires an additional 6K of memory.

The RUN.LlT program which executes AlphaBASIC programs is Slightly larger than
before. It now uses 15,464 bytes.

Because of the addition of the new print spooler, the Task Manager now requires more
memory (although the memory added to the Task Manager will probably be less than
the total amount of memory required for multiple printers under the old print spooler
system).

If the CMDLlN.SYS file is loaded into system memory, the Task Manager needs
15 kilobytes of memory, plus 3 kilobytes for each job/printer connected to it. If
CMDLlN.SYS is not loaded, the Task Manager needs an extra 23K plus 3K per jobl
printer.

If you previously loaded the SCNWLD.SYS file into system memory (especially when
using WRMGEN), you probably will want to load CMDLlN.SYS also, since many of
the programs such as DIR and COPY now use CMDLlN. The SCNWLD program
takes up just over 2 kilobytes of memory, and CMDLlN takes just under 8K.

Note that, because of the increase in size of the 1.3 monitor, the 1.3 version of
WRMGEN reserves more memory for the monitor.

AMOS/L 1.3 RELEASE NOTES Page 15

5.0 INFORMATION ON TERMINALS

The terminal driver programs supplied on the AMOS/L 1.3 release in account
OSKO:[1,S] support the majority of the terminals used on the AMOS/L system. As with
other AMOS/L versions later than 1.0B, all bootable AMOS/L software media and all
AMOS/L integrated computer systems will be shipped with an AMOSLINI file that
assumes that the terminal on which the system boots is an AM-SO terminal (that is, a
terminal using the ALPHA.TOV driver) operating at 9S00 baud.

In order for you to use a terminal to its fullest capabilities, your system must be con
figured so that the proper driver is used for that terminal. Nevertheless, it is often
possible to at least boot a system and reconfigure that system to use the proper
terminal drivers if the terminal driver being used is within the same "family" as your
terminal. For example, the AM-SO driver (AMSO.TOV or ALPHA.TOV) can be used
with an AM-S2 or AM-S2A terminal, allowing the use of minimum capabilities of those
terminals. Of course, you will want to configure your system properly to use the cor
rect drivers for your terminals as soon as you can so that you can make use of all the
features of your terminal.

The normal Alpha Micro computer system comes ready to boot on an AM-SO terminal
because this is the least demanding of the current terminals available from Alpha
Micro in terms of requirements and thus its terminal driver can be used to at least
some extent on the majority of the terminals used on the Alpha Micro computer.

If your system is configured for an AM-SO terminal you can, for example, boot on an
AM-S2 terminal and use the terminal well enough to use the AlphaVUE editor to mod
ify the system initialization command file to change the TAMOEF terminal definition
statement for the Operator Terminal to use the AMS2 terminal driver instead of the
ALPHA terminal driver.

Just as the AM-SO terminal driver can, if necessary, be used with the AM-S2 terminal,
the AMS2.TOV terminal driver will also work with the AM-S2A terminal except that the
additional features of the AM-S2A terminal (such as 132-column display) will not be
supported.

If the terminal you want to use on your system is so different from the AM-SO terminal
that the ALPHA.TOV driver shipped from Alpha Micro will not work adequately with
that terminal, you will have to take a more involved solution to configuring your system
for your terminal.

If you want to use another type of terminal as the Operator Terminal, and the terminal
is not compatible with the AM-SO terminal, you will need to re-configure ALPHA.TOV
to contain the driver used by your own terminal. Boot up with your terminal set to
9S00 baud. Even if the terminal display is somewhat garbled, use the terminal key
board to enter the following commands:

.LOG OVA:

.COPY ALPHA = Your-Oriver.TOV

OS8-10125-00, Rev. AOO

Page 16 AMOS/L 1.3 RELEASE NOTES

where "Your-Oriver.TDV" is the name of the driver used for your terminal. You have
now reconfigured ALPHA. TDV for your terminal.

IMPORTANT NOTE: Before you reboot the system to use the new ALPHA
driver, you must also disable the ALPHA function key translation files on
your system. See the next section for information on function key transla
tion files. After reconfiguring ALPHATDV and any translation files, reboot
your system to load your terminal driver into memory.

5.1 Note on Function Key Translation Files

Function key translation files enable the use of a terminal's function keys for a specific
Alpha Micro software package. Such files bear the name of the terminal driver to
which they apply, and an extension that ends in X. For example, the AM60. VUX file is
the AM-60 terminal function key translation file for AlphaVUE. AMOS/L 1.3 contains
function key translation files for all current Alpha Micro software packages that make
use of these files.

If you configure ALPHA TOV for a terminal other than the AM-60 terminal and do not
disable or reconfigure the ALPHAVUX[7,O] file, when you use AlphaVUE on your non
AM-60 terminal, it will try to use the translation information for an AM-60 terminal, and
AlphaVUE will not work.

If you change the contents of ALPHA. TOV, you will need to disable the ALPHA trans
lation tables by renaming them to some other name. Do NOT use the name of a
terminal driver, since this will confuse the software product into thinking that the trans
lation table applies to that terminal. Remember that these ALPHA translation files
apply only to the AM-60 terminal.

We suggest renaming all translation files to a name not likely to be used as a terminal
driver name. For example:

RENAME TRNS60.VUX=ALPHA.VUX

The ALPHA translation files currently available are:

DSKO:ALPHA VUX[7,O]

DSKO:ALPHA WRX[7, 12]

DSKO:ALPHACAX[7,13]

AlphaVUE translation file

AlphaWRITE translation file available
with AlphaWRITE

AlphaCALC translation file available
with AlphaCALC

Other translation files may be made available with future software products.

5.2 Terminal Driver Source Programs

June, 1985

As of AMOS/L 1.3 Alpha Micro now includes in account DSKO:[10,2] the source files
for the standard terminal drivers distributed by Alpha Micro. These .M6S files bear the
same names as their corresponding terminal driver .TDV files in OSKO:[1,6].

AMOS/L 1.3 RELEASE NOTES Page 17

The reasons for distributing these source files are twofold:

1. To help Alpha Micro computer users create assembly language terminal driv
ers for similar terminals by giving them a base pOint from which to work; an~,

2. To provide an example of the standard implementation for Alpha Micro termi
nal drivers to assembly language programmers who want to build a terminal
driver "from scratch," but who want to create terminal drivers compatible with
the Alpha Micro system that will not be made obsolete by subsequent develop
ment work by Alpha Micro.

6.0 NEW DOCUMENTATION

The documents that apply to the AMOS/L 1.3 Software Release are:

TITLE PART NUMBER REVISION

AMOS/L 1.3 Release Notes DSS-10125-00 AOO

AMOS/L AlphaBASIC XCALL DSS-10122-00 AOO
Subroutines User's Manual

AMOS Installation Program DSS-10099-00 A01
User's Guide

Change Page Packet #5 to the DSS-10002-05 AOO
AMOS/L System Operator's Guide

Change Page Packet #3 DSS-10003-03 AOO
to the AMOS/L Monitor Calls Manual

Change Page Packet #6 to the AMOS/L DSS-10004-06 AOO
System Commands Reference Manual

Change Page Packet #1 to the AMOS/L DSS-1 001 0-01 AOO
Task Manager User's Manual

These manuals and Change Page Packets are all available separately. Please note
that they also are automatically included with the appropriate AMOS/L Software
Documentation Libraries, PDB-00002-00 (General Information, Volumes 1-3), and
PDB-00002-20 (AMOS/L Assembly Language Library). The AMOS/L 1.3 update docu
mentation is also available separately from your dealer.

7.0 THE RELEASE MECHANISM

The AMOS/L Version 1.3 software is available on several types of media. Please con
tact your Alpha Micro dealer for a list of the part numbers associated with the release
media. You will receive a complete set of system software, not just the programs that
have been changed or newly created for the AMOS/L 1.3 Release.

OS8-10125-00, Rev. ADO

Page 18 AMOS/L 1.3 RELEASE NOTES

8.0 PROGRAMS INCLUDED WITH THE AMOS/L 1.3 RELEASE

Please refer to the file AMOS.0IR[1,2] on your AMOS/L release medium - this file
contains a list of all files included with the AMOS/L Version 1.3 release, along with
hash totals for each file.

You may use the new VERIFY command to make sure that all of the files you received
are the correct version, and that they were copied correctly. Once you have copied
your files to your System Disk, log into account [1,2] on your system disk and type
VERIFY and press the RETURN key. See the VERIFY reference sheet in the AMOSIL
System Commands Reference Manual, OSS-10004-00, Revisions A06 and later for
more information.

9.0 INSTALLATION INFORMATION FOR UPGRADING TO AMOS/L 1.3

IMPORTANT NOTE: Because important differences sometimes exist between differ
ent versions of the AMOS/L operating system, it is often not possible simply to copy
the contents of the AMOS/L release medium onto your System Disk and then boot
under your previous version AMOS/L monitor. The AMOS/L utility programs (e.g.,
VUE, MONTST, FIX420, and MONGEN) may not work under an earlier monitor. There
fore, it is very important that you carefully follow the instructions in this section.

9.1 The AMOS Installation Program

June, 1985

When you receive a brand new computer system, you will also receive the latest ver
sion of the AMOS Installation Program on a separate tape or diskette. (The only
exceptions to this are ELS systems that come with 5 1/4" diskettes formatted at
48 TPI.) After you've completely assembled the hardware and you're ready to begin
loading the software, you should read the AMOS Installation Program User's Guide,
OSS-10099-00, for instructions on how to use the built-in loader program to load the
AMOS Installation Program on your system.

The AMOS Installation Program then prompts you to enter specific configuration infor
mation about your system and automatically generates the appropriate System Moni
tor for your particular set of hardware.

NOTE: Some systems may already have a previous version of the AMOS
Installation Program installed when you receive them from the factory.
The first time you boot your new system, you'll see the AMOS Installation
Program banner on your terminal screen. If this is the case, you will use
this installation program to load the current version of the Installation Pro
gram from its release medium, and start answering its questions. The
AMOS Installation Program User's Guide, OSS-10099-00, explains how
this program works.

AMOS/L 1.3 RELEASE NOTES Page 19-

ANOTHER NOTE: If you have a system with less than 256K of memory,
the AMOS Installation Program won't work. You'll see this message when
you try to use it:

?Cannot continue - The AMOS Installation Program needs
256K of memory - you must either install more memory or
use a warm boot tape.

If you see this message, contact your Alpha Micro dealer.

9.2 The AMOS/L 1.3 Monitor File

The AMOS/L 1.3 software release provides an LSYS.MON monitor that you must con
figure for your particular System Device.

9.3 General Installation Instructions

Before installing AMOS/L 1.3 on an existing system, please perform these preliminary
steps while your system is still running under your current AMOS/L monitor.

1 . Make a bootable backup of your System Disk, and verify that it is a good copy.

2. If your System Disk is a Winchester disk drive or a floppy disk, use FIX420 or
FIX210 (respectively) to generate a good driver for your System Device.
(Remember to specify the proper number of logical devices if your System
Device is a Winchester disk drive.) You will need to use this driver in the instal
lation procedures that follow. See "Configuring an AM-210 Floppy Disk Driver"
and/or "Configuring Winchester Disk Drivers" in the AMOSIL System Opera
tor's Guide, DSS-10002-00, for information on this procedure.

9.4 Bringing Up the AMOS/L 1.3 Monitor

You should follow these steps (discussed in detail in the sections below) to install the
1.3 release:

• Copy the monitor file and other needed files to your System Disk.

• Build an executable monitor named TEST.MON using MONGEN.

• Copy AMOSLINI under the name TEST.INI, and modify TEST.INI to add
any new commands or definitions required by the release.

• Test the TEST.lNI file using MONTST.

• Rename the monitor and TEST.INI files to AMOSL.

• Copy down the rest of the AMOS/L 1.3 release.

• Bring up the LOKSER system (optional).

• Bring up the Disk Cache Buffer Manager system (optional).

088-10125-00, Rev. AOO

Page 20 AMOS/L 1.3 RELEASE NOTES

9.4.1 Copying the AMOS/L 1.3 Monitor File

1. Log into DSKO:[1,2].

2. Transfer a copy of the following files from the AMOS/L 1.3 release medium to
the same accounts on your System Disk:

LSYS.MON[1,4]
JOBALC.LlT[1,4]
ERSATZ.LlT[1,4]
ERSATZ.lNI[1,4]
MONGEN. LlT[1,4]
SYSMSG.USA[1,4]
VCRRES.LlT[1,4]
ENGLSH.LDF[1,6]

Use the appropriate copy or restore command. For example, to copy the soft
ware from an Update Floppy Diskette, use the COpy command. To restore the
software from a 1/4" Streamer Update Tape, use the STRRES command. To
restore the software from a 1/2" Magnetic Transport Drive Update Tape, use
the TAPFIL command.

9.4.2 Building an Executable Monitor

June, 1985

1. Locate the driver program for your System Device in account DSKO:[1,6]

If your System Device runs under the control of a Winchester Disk Controller
or a Floppy Disk Controller, you have previously used the FIX420 or FIX210
command to generate a driver for this device.

2. Log into DSKO:[1,4]. Use the MONGEN command to generate a new monitor
with the proper disk driver. Specify the LSYS.MON 1.3 monitor as the input
monitor. Press the RETURN key when asked for a language definition file to
accept the default, ENGLSH.LDF. Specify LSYS.MON as the output monitor
do NOT use the name AMOSL.MON yet. For example:

.MONGEN
Input new monitor: LSYS.MON
New disk driver name: SMD.DVR
New language Definition Table Name:
New monitor name: LSYS.MON

Now save the new monitor to the disk:

.SAVE LSYS.MON

Refer to the MONGEN reference sheet in the AMOSIL System Commands Ref
erence Manual, DSS-10004-00, if you are not familiar with using MONGEN.

AMOS/L 1.3 RELEASE NOTES

9.4.3 Additions to the System Initialization Command File

Follow this procedure to modify your System Initialization Command file:

1. Create a test copy of your AMOSL.INI file called TEST.INI.

2. Before the first SYSTEM command, add the line:

ERSATZ ERSATZ.lNI

IMPORTANT NOTE:

Page 21

If you do not add the ERSATZ command, you will not be able to
use ersatz device and file names.

3. Add the following command only if you are going to be using the Task Man
ager print spooler. It also must be placed before the first SYSTEM command:

MSGINI8K

4. Before the final SYSTEM command, but after the first SYSTEM command (if
any) add the line:

SYSTEM SYSMSG.USA

IMPORTANT NOTE:

If you do not add the SYSMSG.USA file, you will receive code
numbers instead of messages when the system needs to display
an error or status message. Error message codes are docu
mented in Appendix E of the AMOSIL System Operator's Guide,
OSS-10002-00, Rev. A05.

Later, when you create a warm boot monitor using the WRMGEN
command, you'll want to remember to include SYSMSG.USA with
the other files to be loaded into memory.

9.4.4 Testing the AMOS/L 1.3 Monitor

Now it is time to boot your system under AMOS/L 1.3. (Make sure that a :T symbol is
at the top of your AMOSL.INI file so that you can see the system initialization com
mand file on your Operator Terminal while the system boots.)

1. Log into OSKO:[1,2]

2. Enter:

.MONTST LSYS.MON,TEST.INI

Your system should now reboot and come up under AMOS/L 1.3.

3. Enter:

.SYSTEM

to make sure that you are running under AMOS/L 1.3.

Page 22 AMOS/L 1.3 RELEASE NOTES

4. If for some reason the system does not come up, push the Reset button to
boot from your original AMOSL.MON and AMOSL.lNI files. Then, look at your
TEST.INI file to check for errors. Review the earlier installation instructions to
make sure that you have copied over the correct files from the AMOSIL 1.3
release medium.

9.4.5 Making the AMOS/L 1.3 Monitor the Default Monitor

Now that you are sure that the system comes up correctly under AMOS/L 1.3, you can
make your LSYS.MON file the default so that the system will use this file to boot when
you power the system up or push the Reset button. You will also save a copy of your
old AMOSL.lNI file under the name OLD.lNI, just in case.

Enter:

.COPY AMOSL.MON = LSYS.MON

.RENAME/D OLD.lNI = AMOSL.INI

.RENAME AMOSL.lNI = TEST.lNI

At this pOint you are running under an AMOS/L 1.3 monitor, but the software you are
using is still AMOS/L version 1.2A or earlier.

9.5 Bringing Up the Remainder of the AMOS/L 1.3 Release

June. 1985

1. Log into DSKO:[1,2].

2. Copy all of the files from your AMOS/L 1.3 release medium to your System
Disk, DSKO:, using the appropriate copy or restore commands. Make sure that
you copy all files to their proper accounts. For example:

or:

or:

or:

.COPY DSKO:[) = HWK1:[]

. VCRRES DSKO:[] = ALL:[]

.STRRES DSKO:[] = ALL:[]

.TAPFIL DSKO:[J = ALL:[)

3. Integrated systems and bootable media are shipped assuming that the Opera
tor Terminal uses the ALPHA. TDV terminal driver configured for an Alpha
Micro AM-SO terminal. If under your previous AMOS/L version you used the
COPY command to reconfigure ALPHA.TDV to contain a driver for a non
AM-SO terminal, you must remember to use COpy to reconfigure ALPHA.TDV
again for your non AM-SO terminal since you have just copied over your old
ALPHA. TDV with the AM-60 version supplied with AMOS/L Version 1.3. See
Section 5.1 for information on configuring the ALPHA.TDV terminal driver.

AMOS/L 1.3 RELEASE NOTES Page 23

If you change the contents of ALPHATDV, do not forget to disable the ALPHA
translation tables by renaming them to some other name. Do NOT use the
name of a terminal driver, since this will confuse the application software prod
uct into thinking that the translation table applies to that terminal.

Remember that these translation files apply only to the AM-60 terminal. We
suggest renaming all translation files to a name not likely to be used as a
terminal driver name. For example:

.RENAMEID TRNS60.VUX = ALPHA.VUX

The translation files currently available are: DSKO:ALPHAVUX (AlphaVUE);
DSKO:ALPHAWRX[7,12] (AlphaWRITE; supplied with AlphaWRITE product);
and DSKO:ALPHACAX[7,13] (AlphaCALC; supplied with AlphaCALC product).
Other translation files may be made available with future software products.

DO NOT reboot your system until you have reconfigured ALPHA.TDV and any
translation files.

4. Reboot your system by pushing the Reset button.

5. before you do anything else, you should use the AMOS/L 1.3 software to
generate a new disk driver for your System Disk and incorporate it into the
monitor:

a. Log into DSKO:[1,6] and make new copies of your disk and device driv-
ers. For example:

.COPY SMD.DVR = SMD410.DVR

.COPY HWK.DVR = HWKSOO.DVR

.COPY VCR.DVR = 610DVR.DVR

.COPY STR.DVR = 620DVR.DVR

Use the FIX210 command to generate new drivers for all floppy disk
drives that run under the control of a Floppy Disk Controller.

Use the FIX420 command to generate new drivers for all Winchester
disk drives.

OSS·10125-00, Rev. AOO

Page 24

June,1985

AMOS/L 1.3 RELEASE NOTES

b. Log into DSKO:[1,4) and use the MONGEN command to incorporate
your DSKO: System Device driver into your new AMOS/L 1.3 monitor.
Use the name TEST.MON for the new monitor. For example:

.MONGEN
Input new monitor: AMOSL.MON
New disk driver name: PLD.DVR
New language Definition Table Name:
New monitor name: TEST.MON

Now, save the new monitor to the disk:

.SAVE TEST.MON

6. Log into DSKO:[1,2) and use the MONTST command to boot from the new
monitor:

.MONTEST TEST.MON,AMOSL.lNI

7. If the test monitor comes up fine, log into DSKO:[1,4] and rename the file to
AMOSL.MON:

.RENAME/D AMOSL.MON = TEST.MON

8. Push the Reset button to reboot your system. You are now up and running with
an AMOS/L 1.3 monitor, system initialization command file, and system
software.

9. Remember to use the AMOS/L 1.3 WRMGEN command to generate new
warm boot monitors for your boatable 1/2" magnetic tapes, video cassettes
and 1/4" streamer tapes. (And be sure to include CMDLlN.SYS and
SYSMSG.USA on your warm boot tape.)

WARM BOOT MONITOR WARNING

Many people who build warm boot tapes routinely include the CRT420 pro
gram so that they can recertify Winchester disks that run under the control of
the AM-420 disk controller or t~at are contained in AM-1000 series systems.

Certifying a disk is always a last resort. You should NEVER recertify a disk
unless you see repeated error messages indicating: 1) the BADBLK.SYS file
for that disk is no longer on the disk; OR, 2) hard device errors make areas of
the disk inaccessible.

Winchester disks you receive from Alpha Micro already have been fully tested
and certified at the factory using sophisticated testing procedures not feasible
for use in the field. If you certify a disk drive, that drive may be marginally less
reliable in its handling of media flaws than when it arrived from Alpha Micro
because the BADBLK.SYS file created when you certify may be different from
the optimum one created at the factory.

AMOS/L 1.3 RELEASE NOTES Page 25

The AMOS/L 1.3 CRT420 has been modified. You MUST include. both
CRT420.LlT and XXXCRT.LlT in your AMOS/L 1.3 warm boot monitor when
creating a warm boot tape that you think you will need to use in the future to
certify an AM-420 or AM-1000 disk drive.

Before you create a warm boot tape that will allow you to certify a disk drive,
be sure to save a copy of that disk drive's BADBLK.SYS file under another
name on removable media so that you can restore that file after certifying the
drive. This avoids deleting the optimum, factory-created BADBLK.SYS file. For
more information on this procedure, contact your dealer or the Alpha Micro
Service Division.

9.6 Bringing up LOKSER

Your system is now running properly under AMOS/L 1.3. If you want to activate the
LOKSER File Locking Service System, refer to Chapter 3 of the AMOSIL LOKSER
User's Manual, DSS-10034-00, for instructions. Following is a brief summary of the
steps to perform in bringing up LOKSER:

1. Log into DSKO:[1,2] and use the LOKGEN command to build an initial file-lock
data base. Use the default data base file name LOKGEN.DAT, and use the
C Command to build the file.

After you answer all of the questions, use the F command to exit and create
the LOKSER.SYS data file.

2. Add the following command to your AMOSL.INI file:

SYSTEM LOKSER.SYS/N

If LOKSER.SYS is loaded and initialized correctly, you will see the following
message on bootup:

LOKSER x.x Initialized

9.7 Bringing Up the Disk Cache Buffer Manager System

Now that your system is running AMOS/L 1.3, you may want to bring up the Disk
Cache Buffer Manager' system, which can provide a dramatic increase in system
speed, depending on the way files are used on your system. See the document "The
Disk Cache Buffer Manager," in the AMOSIL System Operator's Guide, DSS-1 0002-00 ,
Revisions AOS and later, for information on installing the disk cache.

10.0 ELS SYSTEM SUPPORT

The Alpha Micro multi-user ELS system that runs both the * MS-DOS and AMOS/L
operating systems uses the standard AMOS/L software release. AMOS/L 1.3 there
fore contains several drivers and support programs for the ELS system. Refer to the

OS8-10125-00, Rev. AOO

Page 26 AMOS/L 1.3 RELEASE NOTES

installation instructions that accompanied the ELS system for information on installing
and using AMOS/L on an ELS system.

(*MS is a registered trademark of Microsoft Inc.)

10.1 ELS System Commands

June. 1985

The following lists provide you with all the AMOS/L system commands that are sup
ported by the Alpha Micro ELS system. We also provide a functional summary of
these AMOS/L commands, so that if you are not familiar with the name of a specific
command, but know its function, you will be able to find it. At the end of this reference
summary, you'll find a list of all AMOS/L commands that are not supported on the
ELS system for easy reference.

ALPHABETIC SUMMARY OF AMOS/L COMMANDS SUPPORTED BY ELS

AMTOWS APPEND ASCDMP ATTACH BASIC
BATCH BITMAP CACHE CLEAR COM
COMPIL CONT COPY CREATE DATE
DEL OEVTBL DING DIR 01 RSEQ
DO OSKALC DSKANA DSKCPY DSKDDT
DSKDMP OSKFIL DSKPAK DUMP ERASE
ERSATZ EXIT FILCOM FILDMP FIX
FIXCRC FIXLAM FIXTRM FLPDIR FLPWIN
FORCE GLOBAL GOTO HASHER HELP
ISMBLD ISMDMP JOBALC JOBPRI JOBS
KILL LABEL LlBLIT LNKLIT LOAD
LOG LOGOFF LOKGEN LOKUTL LOOKUP
MAKE MAKQUE MAP MEMORY MENU
MONGEN MONHSH MONTST MOUNT M68
PARITY PASS PATCH PAUSE PPN
PRINT PRNT QDT QUEUE REDALL
RENAME RESET RNDRED RUN SAVE
SEND SET SHELL SIZE SLEEP
SLEEPR SORT SRCCOM STAT SUBMIT
SYMLlT SYSACT SYSTAT SYSTEM TIME
TRACE TRMDEF TSKINI TXTFMT TYPE
U VER VERIFY VUE WAIT
WINFLP WSTOAM XY

FUNCTIONAL SUMMARY OF COMMANDS

NOTE: Commands that perform several functions appear under more than one heading.

Special ELS Commands:
AMTOWS DSKALC FIXLAM RESET WSTOAM

AMOS/L 1.3 RELEASE NOTES Page 27

Directory and Account Commands:
DIR DIRSEQ FLPDIR LOG
LOGOFF PASS PPN SYSACT

File Commands:
APPEND ASCDMP COM COpy
CREATE DIR DSKFIL DSKDMP
DUMP ERASE FILCOM FILDMP
FLPWIN MAKE PRINT PRNT
RENAME SIZE SORT SRCCOM
TYPE VERIFY

Wildcard File Commands:
COpy DIR ERASE FLPDIR
FLPWIN PRNT PRINT RENAME
WINFLP

Disk and File Copy Commands:
COPY DSKCPY FLPWIN WINFLP

Special Commands:
CACHE CLEAR DSKPAK DO
FIXTRM LOKGEN LOKUTL MENU
MONGEN MONHSH MONTST MOUNT
PATCH SHELL U

Command File Commands:
BATCH COM CONT EXIT
GOTO LOOKUP PAUSE TRACE

Text Processing Commands:
TXTFMT VUE

Language Processor Commands:
BASIC COMPIL GLOBAL LlBLIT
LNKLIT RUN SYMLlT

Job and Terminal Handling Commands:
ATTACH DING FORCE JOBALC
JOBPRI JOBS KILL LOG
LOGOFF SEND SET SLEEP
WAIT XY

Memory Partition Commands:
DEL LOAD MAP MEMORY
SAVE

Analysis and Certification Commands:
DSKANA FIXCRC HASHER LABEL
REDALL RNDRED

055-10125-00, Rev. ADO

Page 28 AMOS/L 1.3 RELEASE NOTES

System Initialization Commands:
BITMAP CACHE DEVTBL ERSATZ
JOBALC JOBS KILL PARITY
QUEUE SYSTEM TRMDEF VER

System Information Commands:
ATTACH BITMAP DATE DEVTBL
ERSATZ HELP JOBPRI JOBS
,MEMORY PPN QUEUE SET
STAT SYSTAT SYSTEM TIME
TRMDEF

ISAM Commands:
ISMBLD ISMDMP

Debugging Commands:
FIX FIXCRC LOKUTL QDT

10.2 AMOS/L Commands Not Supported on the ELS System
BADBLK BAUD CAL100 CAL120
CPMCPY CPMDIR CRT41 0 CRT415
CRT420 CRT61 0 CRT620 FILTAP
FIX210 FIX420 FMT21 0 FMT500
MTBOOT REBOOT REWIND SKIP
STRDIR STRRES STRSAV TAPDIR
TAPE TAPFIL VCRDIR VCRRES
VCRSAV WRMGEN

11.0 IMPORTANT INFORMATION FOR AM-1000 DISK SUBSYSTEM OWNERS

June. 1985

The information in these paragraphs applies to owners of AM-1000 desktop com
puters that are connected to one or more AM-1001 Winchester Disk Subsystems.

The AM-1001 Winchester Disk Subsystem is almost identical to the AM-1000 com
puter in appearance. It provides additional disk storage using Winchester technology
disk drives. Part of the installation procedures for an AM-1001 consists of generating
unique disk drivers for each of the AM-1001 subsystems.

If your AM-1000 already contains an AM-1001 subsystem and you are upgrading your
system software to AMOS/L 1.3 from a previous software release, you will need to use
FIX420 to generate new driver programs for each AM-1001 attached to your AM-1000
after AMOS/L 1.3 is installed and before you access the AM-1001 devices. As of
AMOS/L 1.2A, FIX420 asks if you are building a driver for a subsystem and, if your
answer is yes, asks which AM-1001 controller the driver is for. After the proper driver is
built by FIX420, the driver is left in memory. Remember to save it to the disk by using
the SAVE command:

SAVE WIN.DVR

AMOS/L 1.3 RELEASE NOTES Page 29

For more information on using FIX420, refer to the FIX420 reference sheet in the
AMOSIL System Commands Reference Manual, 088-10004-00, revisions AOe and
later, and the AMOSIL System Operator's Guide, 088-10002-00, revisions A05 and
later.

For full installation instructions for the AM-1001, refer to the Installation Instructions:
AM-1001 Winchester Disk Subsystem, POI-01001-00, Revisions A05 and later.

For information on the AM-1000 system, refer to the AM-1000 Owner's Manual,
POB-00003-01.

088.10125-00, Rev. AOO

INDEX

A E
AlphaBASE4
AlphaBASIC 4
AlphaBASIC XCALL subroutines 7, 12
AlphaCALC 1 to 2, 4

Additional files 1

ELS support 25
ELS system commands 25 to 26
Error reporting

Disk device 3
ERSATZ command 11

Installation 1, 4 Ersatz devices 6, 10 to 11

PiC 1
Version. 1 to 2

AlphaWRITE 1 to 3 F
Additional files 1
Compatibility 3
Features 3
Installation 1, 3
PiC 1
Version. 1 to 2

AM-1001 subsystem 28

File locking system 25
FORTRAN 77 9 to 10

Special spooler file 1 0
Function key translation files 16
Function keys 6, 11

Programming 6

AM-60 terminal 15 to 16
AMOS prompt symbol 6
AMOS/L 1.3

New features 6 to 7 IAMDA4
AMOS/L commands 26 Installation instructions 19 to 20, 25
AMOSLINI file 6 Installation Program 18

International A.M. Dealers Association4

B L
Bootable media 17 Language definition files 7, 13 to 14

Loader 18
LOKSER 5, 25

c
Change page packets 17 M
Changing existing queue files 5 Memory requirements4, 14
CMDLlN processor4 to 6 Monitor calls 7, 12 to 13
Command line processor 4 to 6 MS-DOS 25
Compatibility

AlphaBASE4
AlphaBASIC , 4
AlphaWRITE 3
AMOS/L 1.3 4
Task Manager 5

N
New documentation 17
New features: AMOS/L 1.3 6 to 7

Configuring a terminal 15 to 16
Copying files 10 o

Operator terminal 15

o
Defining prompt symbol. 12 P
Disk cache buffer manager 6 to 7, 13 PIC Code l
DSKANA option 7, 14 PRINT command 8 to 9

055-10125-00, Rev. ADO 1-1

INDEX

Print spooler•......... 6 to 9, 12
Compatibility 9 to 10
Default.•... 8
Differences • .. 8
Interaction•.....•....••...... 9
Mixing•................•..... 9
Old•........................ 7
Options 8 to 9
PRINT command•.........•.. 8
PRNT command•............ 8
Resources 8
Task Manager•....... 2, 6

Product Installation Code•.............. 1
Programming languages•............. 9 to 10

AlphaBASIC .•................•............ 9
AlphaPASCAL 9
Compatibility•.... 9 to 10
FORTRAN 10

Programs included with 1.3 .•.....•........... 18

Q
olC 11 format•.................. 7, 11
olC 24 format 7. 11

s
SCNWLD processor•..... 5 to 6
SET command•..•.•.. 6 to 7
Source programs

Terminal drivers 16 to 17
Spooler

Task Manager 2, 6

1-2

Streaming tape drive format •.....•......... 7, 11
System initialization command file•. 6, 10, 21
System library routines••........ 12 to 13

T
Task Manager .••............•.•......... 5 to 6
Task Manager print spooler .•......... 2, 6 to 9, 12

Compatibility .•••...•................. 9 to 10
Options 8 to 9
PRNT command •...•..........••..•....... 8
Setup•...•.•••......... 8

TeAT codes•.................... 4 to 5, 13
Terminal drivers•...•. 15 to 17
Terminal feature access codes 4 to 5
Terminal function keys 6, 11

Programming .•......•.................... 6
Testing AMOS/L 1.3 ..•.....•.•..•...•....... 21

V
VERIFY command•.........•...... 6, 10, 18
Verifying software installation , 6

W
Warm boot monitors , ...••....... 6
Wildcard processing ...•.................. 5 to 6
WRMGEN command•..............•.... 6

X
XCALL subroutines 7, 12

088-10125-00. Rev. AOO

RELEASE NOTES

AMOS/L 1.38

alpha mll:::rc
DSS-10204-OO, AOO

FIRST EDITION

May 1986

REVISIONS INCORPORATED

REVISION I DATE

©1986 ALPHA MICROSYSTEMS

THE INFORMATION CONTAINED IN THIS MANUAL IS BELIEVED TO BE ACCURATE AND
RELIABLE. HOWEVER, NO RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS OR USE
OF THIS INFORMATION IS ASSUMED BY ALPHA MICRO.

This document may contain references to products covered under the following U.S. Patent
Number(s): 4,530,048

THE FOLLOWING ARE TRADEMARKS OF ALPHA MICROSYSTEMS, SANTA ANA, CA 92799

AMOS
AlphaCALC
AlphaRJE

AM-100
AlphaFORTRAN
AlphaSERVE

AlphaACCOUNTING
AlphaPASCAL
AlphaWRITE

ALPHA MICROSYSTEMS
3501 Sunflower
P.O. Box 25059

Santa Ana, Ca 92799

AlphaBASIC
Alpha Micro

AMOS/l 1.39 RELEASE NOTES

Table of Contents

1.0 PROGRAMS INCLUDED WITH THE AMOS/L 1.38 RELEASE •••••••••••••• 2
1.1 New VCR Remote Control Support ••••••••••••••••••••••• 2
1.2 The FIX420 program ••••••••••••••••••••••••••••••••••• 2
1.3 The AM-350 Intelligent 1/0 controller •••••••••••••••• 3
1.4 The AM-515 Intelligent SASI Disk Controller •••••••••• 3

1.4.1 The FIXLOG program ••••••••••••••••••••••••• 4
1.5 New AlphaBASIC Error Codes ••••••••••••••••••••••••••• 5
1.6 AlphaWRITE and AlphaCALC Printer Drivers ••••••••••••• 5
1.7 Documentation Included ••••••••••••••••••••••••••••••• 5
1.8 Note on Function Key Translation Files ••••••••••••••• 5

2.0 BRINGING UP AMOS/L 1.3B ••••••••••••••••••••••••••••••••••••• 6
2.1 Building an Executable Monitor ••••••••••••••••••••••• 6

2.1.1 Testing the AMOS/L 1.38 Monitor •••••••••••• 7
2.1.2 Making the AMOS/L 1.38 Monitor the Default

Monitor •••••••••••••••••••••••••••••••••••• 8

DSS-10204-00, Rev. ADO

AMOS/L 1.38 RELEASE NOTES

May 1986
Revision AOO

AMOS/L 1.38 RELEASE NOTES

The AMOS/L 1.38 release includes software to support the AM-350 Intelligent
Serial 1/0 Controller, the AM-515 Intelligent SASI Disk Controller, and
remote control of video cassette recorder backup when the remote-control
VIDEOTRAX Video Tape Recorder is used. AMOS/L 1.38 consolidates the
interim information released with the 1.31 releases, and also includes
support for the AM-1575 system.

The AMOS/L 1.38 Release Notes document only the changes between the 1.3
release and the 1.38 release. Therefore, you should consult the AMOS/L 1.3
Release Notes, DSS-10125-00, for a description of the standard software
contained on this release. IF YOU ARE UPGRADING YOUR SYSTEM FROM A PRE-1.3
RELEASE, USE THE INSTALLATION INSTRUCTIONS IN THE 1.3 RELEASE NOTES INSTEAD
OF THE INSTRUCTIONS IN THESE RELEASE NOTES.

NOTICE

As part of the enhancements made to AMOS/L 1.38 to support the
high-performance AM-515 disk controller, certain changes have
been made to the internal structure and format of AMOS disk
drivers. All disk drivers contained on the AMOS/L 1.38 release
have been updated appropriately. If your system uses a disk
driver that was not supplied by Alpha Micro, or drivers you
created using FIX420, you will need to re-create those drivers to
work with AMOS/L 1.38. Use of an older format driver with AMOS/L
1.38 can lead to consequences such as failure of the system to
boot or corruption of the disk data. If your driver was created
using FIX420, re-create it again on your 1.38 system using
FIX420. If you are unsure as to the status of your driver
software, please contact the person who supplied the driver to
you for further information.

IMPORTANT NOTE: If you are going to install AftOS/L
on your syste., it is .ost important that Version 1.38

you first
instructions.

DSS-10204-00, Rev. AOO

read Section 2.0 for installation

AMOS/L 1.38 RELEASE NOTES Page 2

1.0 PROGRAMS INCLUDED WITH THE AMOS/L 1.38 RELEASE

The AMOS/L 1.38 software is released
See the file AMOS.DIR on your release
list of all files included with
totals for each file.

on VCR tape and floppy diskettes.
media - this file contains a
the 1.38 release, along with hash

Please note that no AMOS Installation Program is included with this
release. Future releases will not use this program.

You may use the VERIFY command to make sure that all of the files you
received are the correct version, and that they were copied correctly.
Once you have copied your files to your System Disk, log into account
DSKO:[1,2J, type VERIFY and press the RETURN key. If you would like
more information on this command, see the VERIFY reference sheet in
the System Commands Reference Manual appropriate to your system.

1.1 New VCR Remote Control Support

New versions of the VCR driver programs (VCR.DVR and 610DVR.DVR) and
the VCR backup programs (VCRSAV, VCRDIR, VCRRES, and CRT610) now
support the use of the remote control capability of the Alpha Micro
VIDEOTRAX Video Tape Recorder (VTR). Using the remote control
features of this recorder, many of the manual operations that were
previously part of a video backup (such as pressing the RECORD button)
will be automatically performed for you by the VIDEOTRAX VTR, and you
will not be prompted for such operations. If you do not have a remote
control VIDEOTRAX VTR, the AMOS/L video backup software will operate
as it did in past releases.

An important benefit of using the video backup software with the
remote control VIDEOTRAX VTR is that command files containing VCRSAV
commands can now also include the CRT610/F command to ensure that the
tape is automatically verified after each backup (since CRT610 can now
command the VTR to rewind before beginning the verification).

~

All AM-1500 series and future Alpha Micro systems support these
automatic backup features - you merely have to plug your VIDEOTRAX
Video Tape Recorder into the system.

1.2 The FIX420 program

A new version of the FIX420 program is included which allows you to
configure a driver for new disk devices. The menu now includes disk
devices that can be controlled by the AM-515 Intelligent disk
controller. These disks DO NOT need to have disk drivers configured
for them if you have an AM-515 controller board. They are included on
the menu in case you have one of these disks and do NOT have an
AM-515, in which case you can use FIX420 to configure a driver program
for these devices.

DSS-10204-00, Rev. AOO

AMOS/L 1.3B RELEASE NOTES Page 3

1.3 The AM-350 Intelligent 110 controller

A new interface driver (AM350.IDV) and microcode file (AM350M.MIC) are
provided with this release to support the AM-350 Intelligent I/O
controller board. This board brings more speed and control to serial
communications on the AM-1500 series systems.

Specify the AM-350 in a TRMDEF statement in your system initialization
command file. The format of the interface statement is:

AM350=I/0 port address{:baud rate}

As with other I/O controllers, you may optionally specify a baud rate.
The baud rates supported by the AM-350 are:

50
300

4800

75
600

7200

110
1200
9600

134.5
1800

19200

150
2000

200
2400

See the document on the System Initialization Command File in the
System Operator1s Guide that applies to your system for more
information about TRMDEF statements.

IMPORTANT NOTE: The AM-350 driver program, AM350.IDV, has
an associated micro-code file, AM350M.MIC, which MUST be in
account DSKO:[1,6J in order for the AM-350 to function. It
is important that this micro-code file be included on any
warm boot tapes where the AM350.IDV file is included.

1.4 The Aft-515 Intelligent SASI Disk Controller

A new driver program (515DVR.DVR) and microcode file (AM515.MIC) are
provided with this release to support the AM-515 Intelligent SASI disk
controller board. The AM-515 gives you greater throughput when
accessing the disk.

The AM-515 is designed to control self-configuring disks. These new
disks, working with the AM-515, eliminate the need to configure driver
programs. The 515DVR.DVR program will work with any self-configuring
disk, no matter how much storage capacity it has.

Because of the advanced features of the AM-515, you do not need to use
the software Disk Cache Buffer Manager provided with earlier releases
in order to get fast disk-access. Therefore, if you have an AM-515
controller on your system, DO NOT use the software disk cache - doing
so will actually slow down your system.

DS5-10204-00, Rev. AOO

AMOS/L 1.3B RELEASE NOTES Page 4

IMPORTANT: All of the device drivers included with 1.3B
have been modified to allow them to share the file system
with AM-515 controlled disks. This means that any drivers
you may have that are not standard Alpha Micro drivers must
be re-created on your 1.3B system. Drivers created under
earlier versions of AMOS/L will not work with 1.3B, and may
cause data corruption problems on your system.

Make sure that the settings of the BOOT 10 on your Central Processing
Unit (CPU) board are set to boot from an AM-515 controlled disk. The
BOOT 10 settings are located on the back panel on your computer. The
MAIN device settings should be set to read, from left to right:

or:

o o 1 1

DOWN DOWN UP UP

IMPORTANT NOTE: The AM-515 driver program, 5150VR.DVR, has
an associated micro-code file, AM515.MIC, which MUST be i~
account DSKO:[1,6J in order for the AM-515 to function. It
is important that this micro-code file be included on any
warm boot tapes where the AM515 driver is included.

The AM-515 provides an easier way to change the number of logical
devices on the disks that it controls. AMOS/L 1.3B contains a new
program called FIXLOG that performs this function.

1.4.1 The FIXLOG program

The new FIXLOG program allows the System Operator to change the
number of logical disk devices on devices controlled by the AM-515
disk controller. It also provides an easy method to define
sub-system drivers. For information, see the FIXLOG reference sheet
in the System Commands Reference Manual that applies to your system.

1.5 New AlphaBASIC Error Codes

The following error codes have been added to AlphaBASIC:

43 Illegal Record Size
47 Channel #0 is illegal for random files
48 Remote not responding (AlphaNET error)
49 First logical unit not mounted

OSS-10204-00, Rev. AOO

AMOS/L 1.38 RELEASE NOTE5 Page 5

1.6 AlphaWRITE and AlphaCALC Printer Drivers

The printer drivers for AlphaWRITE and AlphaCALC have
the AMOS 1.38 release. This allows these drivers to
applications without requiring the purchase of
AlphaCALC.

been added to
be used by other
AlphaWRITE and

1.7 Documentation Included

The following documentation is included with the AMOS/L 1.38 release:

)
AMOS/L 1.3 Release Notes, 055-10125-00, Revision AOO

AMOS/L 1.38 Release Notes, 05S-10204-00, Revision AOO

Change Page Packet #2 to the AM05/L Video Cassette Recorder
8ackup 50ftware, OS5-10032-02, Revision AOO

Change Page Packet #7 to the AMOS/L System Commands
Reference Manual, 055-10004-07, Revision AOO

1.8 Note on Function Key Translation Files

Function key translation files are explained more fully in the AM05/L
1.3 Release Notes. AM05/L Release 1.38 contains these translation
files:

DSKO:ALPHA.VUX[7,0]
DSKO:ALPHA.AMX[7,0]
DSKO:ALPHA.WRX[7,12]
D5KO:ALPHA.CAX[7,13]
05KO:ALPHA.MAX[7,15]

2.0 BRINGING UP AMOS/L 1.38

AlphaVUE translation file
AlphaMAIL translation file
AlphaWRITE translation file
AlphaCALC translation file
MULTI translation file

NOTE: If you are upgrading your system from a pre-1.3
operating system, DO NOT use these instructions - see the
installation instructions in th.e AMOS/L 1.3 Release Notes,
OS5-10125-00.

055-10204-00, Rev. AOO

AMOS/L 1.38 RELEASE NOTES Page 6

Follow these steps to install the 1.38 release:

o Make a bootable backup of your System Disk, and verify that
it is a good copy.

o If you have an AM-1500 series system, make sure your boot
PROMs are reV1Sl0n COO or later (if not, contact your Alpha
Micro dealer>.

o If you have an AlphaNET network, use SET NOLINK to take your
system off the network.

o Place the AMOS/L 1.38 release media in your backup device.

o Log into DSKO:[1,2J.

o Use the appropriate restore command to restore the files. For
example:

.VCRRES DSKO:=ALL:[J*.* (RET)

o Remember to re-build any disk drivers you have that are not
standard Alpha Micro drivers. Drivers generated under earlier
versions of the operating system WILL NOT WORK with 1.38.

o Generate and test a new monitor using the LSYS.MON file
included with the release (see below>.

o Use the AMOS/L 1.38 WRMGEN command to generate new warm boot
warm boot monitors for your bootable backup media (see below).

2.1 Building ~n Executable Monitor

1. Locate the driver program for your System Device in account
DSKO:[1,6J. You'll need to refer to it in the next step.

2. Log into DSKO:[1,4J. Use the MONGEN command to generate a new
monitor with the proper disk driver. Specify the LSYS.MON 1.38
monitor as the input monitor. Press the RETURN key when asked
for a language definition file to accept the default,
ENGLSH.LDF. Specify TEST.MON as the output monitor - do NOT use
the name AMOSL.MON yet. For example:

.MONGEN (RET)

Input new monitor: LSYS.MON (RET)

New disk driver name: SMD.DVR [RET)

New lan ua e Definition Table Name: (RET)

New monitor name: TEST.MON RET

D5S-10204-00, Rev. AOO

AMOS/L 1.38 RELEASE NOTES Page 7

Now save the new monitor to the disk:

.SAVE TEST.MON [RET]

Refer to the MONGEN reference sheet in the AMOS/L System
Commands Reference Manual, OSS-10004-00, if you are not familiar
with using MONGEN.

2.1.1 Testing the AMOS/L 1.38 Monitor

Now it is time to boot your system
that a :T symbol is at the top
can see the system initialization
Terminal while the system boots.)

1. Log into OSKO:[1,2J.

under AMOS/L 1.38. <Make sure
of your AMOsL.INI file so that you

command file on your Operator

2. If you have an AlphaNET network, make sure that your system
is off the network.

3. Enter:

~MONTST TEST.MON,AMOSL.INI [RET)

Your system should now reboot and come up under AMOS/L 1.38.

4. Enter:

.SYSTEM [RET]

and it should tell you that you are running under AMOS/L
1.38.

5. If for some reason the system does not come up, push the
Reset button to boot from your original AMOsL.MON file.
Make sure you generated the monitor correctly, that you
copied the 1.38 files correctly, and that your AMOsL.INI
file is correct. Then try again.

OsS-10204-00, Rev. AOO

AMOS/L 1.38 RELEASE NOTES Page 8

2.1.2 Raking the AMOS/L 1.38 Monitor the Default Ronitor

Once you are sure that the system comes up correctly under AMOS/L
1.38, you can make your TEST.MON file the default so that the system
will use this file to boot when you power the system up or push the
Reset button:

• LOG DSKO: [1,4] [RET]
7coPY AMOSL.MON=TEST.MON [RET)

Reboot your system by pushing the Reset button.

Remember to use the AMOS/L 1.3B WRMGEN command to generate new warm
boot monitors for your bootable 1/2" magnetic tapes, video cassettes
and 1/4" streamer tapes. And be sure to include CMDLIN.SYS and
SYSMSG.USA on your warm boot tape.

IMPORTANT NOTE: If you have an AM-1500 series system and
if your CPU Boot PROM is revision COO or later, the
previous restriction of a maximum size of 64K for warm
boot monitors no longer applies.

DSS-10204-00, Rev. AOO

RELEASE NOTES

AMOS/L 1.3C
and AMOS/32 1.0A

alpha mll::::rc
DSS-'0254-00 AOO

FIRST EDITION

December 1986

REVISIONS INCORPORATED

REVISION I DATE

©1986 ALPHA MICROSYSTEMS

THE INFORMATION CONTAINED IN THIS MANUAL IS BELIEVED TO BE ACCURATE AND
RELIABLE. HOWEVER, NO RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS OR USE
OF THIS INFORMATION IS ASSUMED BY ALPHA MICRO.

This document may contain references to products covered under the following U.S. Patent
Number(s): 4,530,048

THE FOLLOWING ARE TRADEMARKS OF ALPHA MICROSYSTEMS, SANTA ANA, CA 92799

AMOS
AlphaCALC
AlphaRJE

AM-100
AlphaFORTRAN
AlphaSERVE

AlphaACCOUNTING
AlphaPASCAL
AlphaWRITE

ALPHA MICROSYSTEMS
3501 Sunflower
P.O. Box 25059

Santa Ana, Ca 92799

AlphaBASIC
Alpha Micro

--~~--~~~-

AMOS/L 1.3C and AMOS/32 1.0A RELEASE NOTES

Table of Contents

1.0 INCLUDED WITH THIS RELEASE •••••••••••••••••••••••••••••••••• 2

2.0 AM-1200 SERIES COMPUTER SUPPORT ••••••••••••••••••••••••••••• 2

3.0 SERIAL I/O PORT MAXIMUM ••••••••••••••••••••••••••••••••••••• 3

4.0 DISK DRIVER FORMAT •• 3

5.0 THE AM-350 PHASE I UPGRADE •••••••••••••••••••••••••••••••••• 4

6.0 415DVR.DVR DEVICE DRIVER UPGRADE •••••••••••••••••••••••••••• 4

7.0 AM1013.IDV - AM1013.MIC COMPATIBILITy ••••••••••••••••••••••• 4

8.0 THE AM-515 PHASE II UPGRADE ••••••••••••••••••••••••••••••••• 4
8.1 Device Drivers in System Memory •••••••••••••••••••••• 5

9.0 BITMAP SIZE CHANGE FOR 70MB DRIVES •••••••••••••••••••••••••• 5

10.0 AM-640 MAGNETIC TAPE BACKUP ••••••••••••••••••••••••••••••••• 6
10.1 New Backup Commands •••••••••••••••••••••••••••••••••• 6
10.2 New Monitor Calls •••••••••••••••••••••••••••••••••••• 7

11.0 1/4" STREAMING TAPE FOR VME SYSTEMS ••••••••••••••••••••••••• 7

12.0 BRINGING UP AMOS ••
12.1
12.2
12.3

Building an Executable Monitor •••••••••••••••••••••••
Testing the AMOS Monitor •••••••••••••••••••••••••••••
Making the New Monitor the Default •••••••••••••••••••

DSS-10254-00, Rev. AOO

7
1
9
10

December 1986
Revision AOO

AMOS/L 1.3C and AMOS/32 1.0A RELEASE NOTES

AMOS/L 1.3C and AMOS/32 1.0A are consolidation releases designed to
incorporate the various enhancements and remedies that have already been
distributed as individual patches and software updates. The two operating
systems are still mutually exclusive, but the same upgrades have been made
to both over the past few months, and the introduction of the new AM-1200
Series desktop computers gives us the opportunity to incorporate the latest
changes into each.

These release notes describe the changes between AMOS/L 1.38 and AMOS/L
1.3C, and between AMOS/32 1.0 and AMOS/32 1.0A. Therefore, you should
consult the appropriate reLease notes for your computer system -- the
AMOS/L Version 1.3'ReLease Notes, DSS-10125-00, and the AMOS/L Version 1.38
ReLease Notes, DSS-10204-00; or the AMOS/32 Version 1.0.ReLease Notes,
DSS-10195-00 -- for a description of the standard software contained on
this reLease.

Special Note to Dealers: 8e sure to read these two special
notices that apply specificaLLy to deaLers.

The first, SPECIAL NOTICE FOR DEALERS: AM-1200 SERIES,
DSS-10250-00, accompanies each AM-1200 Series computer
system and contains instructions for warm booting the
computer and transferring the AMOS/L operating system
to the AM-1200 before turning the product over to the
customer.

The second notice, SPECIAL NOTICE FOR DEALERS:
MULTIPLE OPERATING SYSTEM VERSIONS, DSS-10255-00,
accompanies each copy of the AMOS/L 1.3C or AMOS/32
1.0A software you receive from ALpha Micro on video
tape. It describes the organization of data on the
tape, and expLains how to go about seLecting the
appropriate software from the tape for specific
customer appLications.

Special Note to Everybody: If your computer system contains an
AM-515 InteLLigent Disk ControlLer, the circuit board must be
upgraded to Phase II as described in "The AM-515 InteLligent Disk
ControLLer Software Enhancement ReLease," DSS-10244-00, and the
InstaLLation Instructions: AM-515 InteLLigent Disk ControLLer,
PDf-00515-00. <Your AM-515 controller board should then be at
Revision A06 or later.) After you have performed the required
hardware modification, you can instaLL the updated operating
system software as discribed Later in these release notes.

DSS-10254-00, Rev. AOO

AMOS/L 1.3C and AMOS/32 1.0A RELEASE NOTES

IMPORTANT NOTE: If you are going to install this
operating syste. release on your co.puter, it is
essential that you first read Section 11.0, IIBringing
Up AMOS,'I for installation instructions.

1.0 INCLUDED WITH THIS RELEASE

Page 2

The AMOS/L 1.3C and AMOS/32 1.0A software is reLeased on VCR tape and
fLoppy diskettes. See the fiLe AMOS.DIR on your release medium -
this fiLe contains a list of alL fiLes incLuded with the reLease,
aLong with hash totaLs for each fiLe.

The foLLowing documentation is incLuded with this release:

AMOS/L 1.3C and AMOS/32 1.0A ReLease Notes,
DSS-10254-00, Revision AOO

Change Page Packet #9 to the AMOS/L System Commands
Reference ManuaL, DSS-10004-09, Revision AOO

Accompanying these two documents are the foLLowing reLated release
notes:

AMOS/L 1.3 ReLease Notes, OSS-10125-00, Revision AOO

AMOS/L 1.38 ReLease Notes, OSS-10204-00, Revision AOO

for AMOS/L systems, or

AMOS/32 1.0 ReLease Notes, OSS-10195-00, Revision AOO

for AMOS/32 systems.

2.0 AM-1200 SERIES COMPUTER SUPPORT

The motivating force behind the reLease of AMOS/L 1.3C is the
introduction of the new AM-1200 Series Oesktop computers. In addition
to consolidating the various other features added since AMOS/L 1.38,
this software reLease contains the appropriate interface drivers to
support the new AM-1200 hardware: AM1200.IOV, AM1203.IDV, and
AM1213.IOV, as weLL as their associated .MIe microcode fiLes.

You can find compLete specifications for the new AM-1200 Series
computers in Appendix A of the AM-1200 Series Owner's ManuaL,
DSO-00011-00. This appendix aLso includes the supported baud rates
for these interface drivers.

OSS-10254-00, Rev. AOO

AMOS/L 1.3C and AMOS/32 1.0A RELEASE NOTES Page 3

3.0 SERIAL 1/0 PORT MAXIMUM

Beginning with this release, the AMOS operating system you receive
from your dealer is tailored to the number of serial devices
(terminals and printers) you expect to attach to your computer. You
still have the capability to add on terminals and printers as your
system grows, but if you surpass, at some time in the future, the
maximum number supported by the version of the operating system you
are currently licensed to use, you will see this message when your
system boots:

?Maximu. number of serial ports exceeded

This message appears on the Operator Terminal after the
TRMOEF statement in your System Initialization Command File.
in the boot process, you may also see this message:

Non-existent ter.inal

offending
Later on

The computer will boot successfully, but AMOS won't accept the extra
serial ports. If you see either of these messages, contact your
dealer who can supply you with a version of AMOS that recognizes more
ports.

NOTE: If you plan on adding more terminals to your ca.puter
syste., be sure to read the section, "Information on
Ter.inals" in the appropriate AMOS/L 1.3 or AMOS/32 1.0
Release Notes.

4.0 DISK DRIVER FORMAT

As you read in the Release Notes for AMOS/L 1.3B, part of the
enhancements made for that release involved changes to the internal
structure and format of AMOS disk drivers. All disk drivers are now
updated appropriately.

If you install AMOS/L 1.3C on a pre-1.3B computer and your system uses
a disk driver that was not supplied by Alpha Micro, or uses drivers
you created yourself using FIX420, you will need to replace those
drivers with new ones created by the version of FIX420 included with
AMOS/L 1.3C. Use of an older format driver with AMOS/L 1.3C can lead
to such consequences as failure of the system to boot or corruption of
the disk data.

If your driver was created using an older version of FIX420, create it
again on your 1.3C system using FIX420. If your driver is from an

OSS-10254-00, Rev. AOO

AMOS/L 1.3C and AMOS/32 1.0A RELEASE NOTES Page 4

outside source or if you are unsure about the status of your driver
software, please contact the person who supplied the driver to you for
further information.

5.0 THE AR-350 PHASE I UPGRADE

An enhanced interface driver
(AM350M.MIC) are provided with this
Intelligent 1/0 controller board.
control to serial communications on
Series computers. Computer systems
to 8 Megabytes of memory.

(AM350.IDV)
release to
This board

the AM-1500
that contain

and microcode file
support the AM-350

brings more speed and
Series and AM-2000

an AM-350 are limited

IMPORTANT NOTE: The AM-350 driver program, AM350.IDV, has
an associated micro-code file, AM350M.MIC, which MUST be in
account DSKO:[1,6J in order for the AM-350 to function. It
is important that this micro-code file be included on any
warm boot tapes where the AM350.IDV file is included.

6.0 415DVR.DVR DEVICE DRIVER UPGRADE

The 415DVR.DVR program has been upgraded and improved to increase the
efficiency of data transfer when using an AM-415 controlled Winchester
disk on AM-1500 Series and AM-2000 Series computers.

7.0 AM1013.IDV - AM1013.MIC COMPATIBILITY

This interface driver program and its associated microcode file are
once again compatible. These files are used by the AM-1013 ports of
the AM-1003 expansion subsystem for AM-1000 Series computers.

The mismatch of these two files was described in the AMSD Journal
Software Volume Article Number 3.1.10, "AM-1013 on AMOS/L 1.3B." This
situation is corrected in AMOS/L 1.3C.

8.0 THE AM-515 PHASE II UPGRADE

The AM-515 Phase II hardware and software enhancements increase
overall performance and give the AM-515 Intelligent SASI Disk
Controller the ability to compute bitmap sizes for the disk
automatically -- so you don't have to. The new software also removes
the 8 Megabyte limit on memory capacity that was a characteristic of
the earlier AM-515 software. (However, if your computer contains an
AM-350 Phase 1 Serial 1/0 controller, the 8 Megabyte limit still
appl ies.)

DSS-10254-00, Rev. AOO

AMOS/L 1.3C and AMOS/32 1.0A RELEASE NOTES Page 5

See the document AM-515 Hardware Installation, PDI-00515-00 for
complete hardware installation instructions for the AM-515 board.

Also, in the Release Notes for AMOS/L 1.3B, we recommended that you
not use the Disk Cache Buffer Manager on a system with an AM-515
controlled disk. That limitation has been removed with this release,
and you may once again use the Disk Cache Buffer Manager with AM-515
controlled disks. (The AM-515 uses only "locked" blocks such as
Master File Directories (MFDs), User File Directories (UFOs), selected
files, etc.)

8.1 Device Drivers in System Me_ory

If your computer system contains an AM-515 Intelligent Disk
Controller, AMOS/L 1.3C and AMOS/32 1.0A require that the device
driver programs be loaded into System Memory. The disk driver program
for your System Disk, DSK:, automatically becomes part of the System
Monitor whenever you MONGEN a new AMOS monitor, so it is always in
System Memory. But if you have another AM-515 controlled disk that is
not your System Disk, but which has its own driver program, that
driver program must be explicitly loaded into System Memory. The way
you do this is by adding the appropriate SYSTEM statements to your
System Initialization Command File.

For example, if your system contains two different disk drives each
controlled by an AM-515, you need to add a SYSTEM statement to the
.INI file for the one that is not your System Disk. If the driver for
that disk is named WIN.DVR, the statement you must add ahead of the
final SYSTEM statement in the .INI file would be:

SYSTEM WIN.DVR[1,6J

If you have other AM-515 controlled disk subsystems which use
different driver programs, you would also need to add appropriate
SYSTEM statements to load their drivers into System Memory too.

Remember that different physical units can use the same
device driver program if they are the same size and if they
are defined with the same number of logical devices.

9.0 BITMAP SIZE CHANGE FOR 70MB DRIVES

The Bitmap size has been changed for 5 1/4" Fujitsu 70 Megabyte
Winchester disk drives. This change supports a functional requirement
of the AM-515 Intelligent SASI Disk Controller.

The AM-515 can calculate the Bitmap size for disk devices that it
controls, but if have a 70 Mb disk not controlled by and AM-515, and
you install AMOS/L 1.3C on a pre-1.3B computer system, such as an

DSS-10254-00, Rev. AOO

Page b

the FIX420 command to
Drivers generated under

NOT WORK with 1.3C.

AM-1000XP, AM-1545, or AM-1555, you must use
build a new driver for your 70 Mb disks.
pre-1.3B versions of the operating system WILL
Write down the bitmap size that FIX420 gives you.

Then mod,ify your System Initialization Command File and change the
size parameter in the BITMAP statement for each logical unit of the 70
Mb drive to the size that FIX420 told you.

10.0 AM-640 "AGNETIC TAPE BACKUP

The AM-640 Magnetic Tape Subsystem is supported by the Alpha Micro
VMEbus family of computers, the AM-1500 Series and the AM-2000
Series. Nine track magnetic tape has become the backup media of
choice for large computer installations since it offers the potential
for high speed transfer of large amounts of data. The AM-640
Magnetic Tape Subsystem offers both increased speed and increased
tape capacity over its AM-600fT counterpart while maintaining
compatiblity with existing software and installed hardware.

The AM-640 also
computer to boot
System Di sk.

provides
from a

"Warm Boot" capability, enabling the
file on Magnetic Tape instead of from the

For more information, read AM-640 Magnetic Tape Backup Software,
DSS-10242-00. This document supplements the information in the Alpha
Micro System Operator's Guide on "The AM-600fT Magnetic Tape Utility
Programs." The software is intended for use with AM-1500 Series and
AM-2000 Series systems and the new VMEbus AM-640 controller.

10.1 New Backup Co •• ands

In addition to the existing AMOS commands for transferring files to
and from magnetic tape (TAPE, FILTAP, TAPFIL, and TAPDIR), several
new commands have been added to enhance the performance of magnetic
tape backup on VMEbus computers.

The new commands, "TUSAV, "TURES, and MTUDIR, are described in
reference sheets in the System Commands Reference Manual, Rev. A09 or
later.

If you have existing command files that contain the TAPE, FILTAP,
TAPFIL, and TAPDIR commands, you can still run them without
modification. However, the MTU commands described in the reference
sheets will provide significantly better performance, and much higher
reel capacity.

The new commands are able to achieve a much higher data transfer
rate, and because the subsystem can support tape units capable of

DSS-10254-00, Rev. AOO

AMOS/L 1.3C and AMOS/32 1.0A RELEASE NOTES Page 7

6250 BPI (Bits Per Inch) data density, it's possibLe to backup more
than 130 Mb on a standard 2400 foot reeL.

10.2 New Monitor Calls

Three new tape oriented monitor caLLs are avaiLabLe to provide
device-independent access to certain tape drive configuration
functions. The caLLs TAPTYP, TAPDEN, and TAPSPD aLLow specification
of drive type, recording density, and drive speed, respectiveLy.
These caLLs are onLy vaLid on 9-track magnetic tape units and wiLL be
ignored by other tape devices.

The document AM-640 Magnetic Tape Backup Software, DSS-10242-00,
expLains how to use these new monitor caLLs.

11.0 1/4" STREA.UNG TAPE FOR VME SYSTEMS

AM-1500 Series and AM-2000 Series computers are now avaiLabLe with a
1/4" Streaming Tape Drive as an aLternative backup device. To ensure
compatibiLity, certain portions of the streamer software have been
updated. The Streaming Tape software for VME systems supports onLy
the backing up and restoring of fiLes; it does not support warm boot
capabiL ity.

NOTE: If your cOliputer syste. contains a 1/4" Streaming
Tape Drive or an AM-640 Magnetic Tape interface, and your
System Initialization Co.-and File contains the state.ent
SYSTEM MTSTAT.SYS, you should remove it.

If your computer does not have a strea.er or AM-640, but
does contain an AM-600/T Magnetic Tape interface, it's all
right to leave this state.ent in your Initialization file.

12.0 BRINGING UP AMOS

FoLLow these steps to instaLL this reLease:

o Make a bootabLe backup of your System Disk, and verify that it is
a good copy.

o If you have an AM-1500 series system, make sure your boot PROMs
are revision COO or Later (if not, contact your ALpha Micro
deaLer).

o If you have an ALphaNET network, use SET NOLINK to take your
system off the network.

DSS-10254-00, Rev. AOO

o Place the release media in your backup device.

o Log into DSKO:[1,2J.

o Use the appropriate restore command to restore the files.
example:

VCRRES DSKO:[J=ALL:[J [RET]

ra~c u

For

o Use the VERIFY command to make sure that all of the files you
received are the correct version, and that they were copied
correctly. On AMOS/L systems, type:

VERIFY AMOS. DIR [RET)

On AMOS/32 systems, type:

VERIFY AMOS32. DIR [RET]

For more information on this command, see the VERIFY reference
sheet in the System Commands Reference Manual for your system.

o If your computer system contains a magnetic tape drive, notice
that there are two magnetic tape driver programs in account
DSKO:[1,6J. They are 600DVR.DVR for AM-600/T systems and
640DVR.DVR for AM-640 systems. Copy the appropriate one for your
system into the file MTU.DVR. For example:

LOG DSKO:[1,6J (RET)
COpy MTU.DVR=640DVR.DVR (RET]

Log back into account DSKO:[1,4J when you're done.

o Remember to re-build any disk drivers you have that are not
standard Alpha Micro drivers. Drivers generated under releases
prior to AMOS/L 1.38 WILL NOT WORK with this release. Use FIX420
as described in Section 4.0.

o Generate and test a new monitor using the LSYS.MON file (for
AMOS/L systems) or the 32SYS.MON file (for AMOS/32 systems)
included with the release (see below).

o Use the WRMGEN command to generate new warm boot warm boot
monitors for your bootable backup media (see below).

DSS-10254-00, Rev. AOO

~~- ~ -~--~--- -- --

AMOS/L 1.3C and AMOS/32 1.0A RELEASE NOTES Page 9

12.1 Building an Executable Monitor

1. Locate the driver program for your System Device in account
DSKO:[1,6J. You'll need to refer to it in the next step.

2. Log into DSKO:[1,4J. Use the MONGEN command to generate a new
monitor with the proper disk driver. If you have an AMOS/L
system, specify the LSYS.MON monitor as the input monitor.
Otherwise, if you have an AMOS/32 system, specify the 32SYS.MON
monitor as the input monitor. Press the RETURN key when asked
for a language definition fiLe to accept the default, ENGLSH.LDF.
Specify TEST.MON as the output monitor - do NOT use the name
AMOSL.MON or A~OS32.MON yet. For example:

MONGEN [RET]
Input new monitor: LSYS.MON [RET]
New disk driver name: SMD.DVR [RET]
New language Definition Table Name: [RET]
New monitor name: TEST.MON [RET]

Now save the new monitor to the disk:

SAVE TEST.MON [RET]

Refer to the MONGEN
Reference Manual for
using MONGEN.

12.2 Testing the AMOS Monitor

reference sheet
you system if

in the System Commands
you are not familiar with

Now it is time to boot your system under the new operating system.
(Make sure that a :T symboL is at the top of your System
Initialization Command File (AMOSL.INI or AMOS32.INI) so that you can
see the system initialization command fiLe on your Operator Terminal
while the system boots.)

1. Log into DSKO:[1,2J.

2. If you have an AlphaNET network, make sure that your system is
off the network.

3. If you have an AMOS/L system, enter:

MONTST TEST.MON,AMOSL.INI [RET]

DSS-10254-00, Rev. AOO

AMOS/L 1.3C and AMOS/32 1.0A RELEASE NOTES Page 10

If you have an AMOS/32 system, enter:

MONTST TEST.MON,AMOS32.INI [RET]

Your system should now reboot and come up under the new operating
system.

4. Enter:

s.

SYSTEM [RET)

and it should tell you that you are running under the new version
of AMOS.

If for some
button to boot
generated the
correctly, and
correct. Then

reason the system does not come up, push
from your original monitor file. Make
monitor correctly, that you copied the

that your System Initialization Command
try again.

the Reset
sure you
new files

File is

12.3 Raking the New Monitor the Default

Once you are sure that the system comes up correctly, you can make
your TEST.MON file the default so that the system will use this file
to boot when you power the system up or push the Reset button. On an
AMOS/L system you would type:

LOG OSKO: [1,4] [RET}
COPY AMOSL.MON=TEST.MON [RET}

Reboot your system by pushing the Reset button.

Remember to use the WRMGEN command to generate new
for your bootable 1/2" magnetic tapes, video
streamer tapes. And be sure to include CMOLIN.SYS
your warm boot tape.

warm boot monitors
cassettes and 1/4"

and SYSMSG.USA on

IMPORTANT NOTE: If you have an AM-1500 series system and
if your CPU Boot PROM is reV1Sl0n COO or later, the
previous restriction of a maximum size of 64K for warm boot
monitors no longer applies.

OSS-10254-00, Rev. AOO

(:~~~~?
". ~ ~~

~: ~~

'. ,

" :

SOFTWARE MANUAL

INTRODUCTION
TO AMOS

DWM-00100-65
REV. ADO

SOFTWARE MANUAL

INTRODUCTION
TO AMOS

DWM-00100-65
REV.AOO

,.... ~'_' -.. --:BiiililphB mll:::rc

FIRST EDITION

May 1,1980

REVISIONS INCORPORATED

REVISION I DATE

©1985 ALPHA MICROSYSTEMS

THE INFORMATION CONTAINED IN THIS MANUAL IS BELIEVED TO BE ACCURATE AND
RELIABLE. HOWEVER, NO RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS OR USE
OF THIS INFORMATION IS ASSUMED BY ALPHA MICRO.

This book was originally created using the Alpha Micro text editor AlphaVUE and text formatter TXTFMT,
and was then typeset using an Alpha Micro computer.

This document may contain references to products covered under the following U.S. Patent
Number(s): 4,530,048

THE FOLLOWING ARE TRADEMARKS OF ALPHA MICROSYSTEMS, SANTA ANA, CA 92799

AMOS
AlphaCALC
AlphaRJE

AM-100
AlphaFORTRAN
AlphaSERVE

AlphaACCOUNTING
AlphaPASCAL
AlphaWRITE

ALPHA MICROSYSTEMS
3501 Sunflower
P.O. Box 25059

Santa Ana, Ca 92799

AlphaBASIC
Alpha Micro

Introduction to AMOS iii

IMPORTANT NOTE:

This manual is not a guide to system operation. For information on using the system, refer to the AMOS User's
Guide, (DWM-00100-35), and the documents in the AM-100 doc;:umentation packet.

For a complete list of all Alpha Micro software documentation, refer to A Guide to the Alpha Micro Software
Documentation Library, (DWM-00100-37).

Introduction to AMOS v

TABLE OF CONTENTS

IMPORTANT NOTE iii

TABLE OF CONTENTS . .. v

CHAPTER 1 INTRODUCTION

1.1 HOW TO USE THIS BOOK ~ 1-2
12 GRAPHIC CONVENTIONS USED IN THIS BOOK 1-4

PART I GETTING STARTED

CHAPTER 2 WHAT IS A COMPUTER?

2.1 DEFINITION OF A COMPUTER .. 2-1
22 COMPONENT STRUCTURE OF A COMPUTER : ... 2-2
2.3 WHERE COMPUTERS ARE USED ... 2-4
2.4 THE ALPHA MICRO SYSTEM ... 2-4

CHAPTER 3 WHO IS AMOS?

3.1 COMMUNICATING WITH THE COMPUTER .. 3-1
32 SYSTEM STRUCTURE .. 3-2
3.3 THE ALPHA MICRO OPERATING SYSTEM .. 3-4

CHAPTER 4 DATA AND THE COMPUTER

4.1 WHAT IS DATA? ... 4-1
42 THE BREAKDOWN OF DATA .. 4-1
4.3 BINARY NUMBERS AND DECIMAL NUMBERS 4-2
4.4 ASCII ... 4-3
4.5 MACHINE LANGUAGE ... 4-3
4.6 MORE NUMBERING SYSTEMS ... 4-5

4.6.1 Octal .. 4-6
4.62 Hexadecimal .. 4-6

4.7 SNEAK PREViEW ... 4-7

CHAPTER 5 WHAT IS A FILE?

5.1 HANDLING DATA .. 5-1
52 EXAMPLE OF FILE HANDLING: EDITING A TEXT FILE 5-2
5.3 ORGANIZING FILES ON THE DiSK ·, 5-3

5.3.1 User Accounts ... 5-3
5.32 Passwords .. 5-4

5.4 HOW AMOS ALLOCATES FILES ON THE DISK 5-4
5.4.1 Sequential Files ... 5-5
5.4.2 Random Files ... 5-6

vi Introduction to AMOS

'JHAPTER 6 PERMANENT DATA STORAGE

6.1 DISK DRiVES .. 6-1
6.1.1 Disk Structure .. 6-2

62 MAGNETIC TAPE TRANSPORTS .. 6-2

'JHAPTER 7 PROGRAMS

7.1 THE DIFFERENCE BETWEEN DATA AND THE PROGRAM 7-1
72 STEPPING THROUGH A PROGRAM ... 7-2
7.3 ALPHA MICRO PROGRAMS .. 7-5
7.4 THINGS TO COME .. 7-5

:)ART 1/ PROGRAMS AVAILABLE ON THE AMOS SYSTEM

';HAPTER 8 AMOS UTILITY PROGRAMS

8.1 HELP .. 8-1
82 DIR ... 8-2
8.3 SORT ... 8-2
8.4 THE ISAM SYSTEM .. ,.8-4

8.4.1 What is ISAM? .. 8-4

';HAPTER 9 THE AMOS TEXT PROCESSORS

9.1 THE TEXT EDITOR ... 9-1
9.1.1 Character-oriented and Screen-oriented Text Editors 9-2

9.2 ALPHA MICRO TEXT EDITORS .. 9-3
92.1 VUE ... 9-3
922 EDIT .. 9-4

9.3 THE TEXT FORMATTER ... 9-5
9.3.1 TXTFMT ... 9-5
9.3.2 PDLFMT ... 9-6

';HAPTER 10 AMOS LANGUAGE PROCESSORS

10.1 COMPUTER LANGUAGES .. 10-1
10.2 WHAT IS A LANGUAGE PROCESSOR? ; 10-2
10.3 INTERPRETERS AND COMPILERS ... 10-2

10.3.1 Language Interpreters ... 10-2
10.32 Language Compilers .. 10-3
10.3.3 Theory Versus Fact. ... 10-3

10.4 ALPHABASIC ... 10-4
10.5 ALPHAPA,:,~AL ... 10-6
10.6 ALPHALISP ... 10-7
10.7 ASSEMBLERS ... 10-8

10.7.1 The Alpha Micro Assembly Language Programming System 10-10
10.8 THINGS TO COME ... 10-11

Introduction to AMOS vii

PART III AMOS OVERVIEW

CHAPTER 11 GENERAL STRUCTURE

11.1 WHAT IS AN OPERATING SySTEM? .. 11-1
11.2 BASIC STRUCTURE OF AMOS .. 11-3
11.3 AMOS MONITOR CALLS ... 11-4

CHAPTER 12 INTRODUCTION TO JOBS

12.1 WHAT IS AJOB? ... 12-1
122 JOB SCHEDULING ... 12-2

CHAPTER 13 COMMAND PROCESSING

13.1 COMMAND AND DO FILES ... 13-1
13.2 PROCESSING COMMANDS .. 13-3

13.2.1 The Command Processor Search List 13-3
13.3 CHARACTERISTICS OF PROGRAMS ON THE AMOS SySTEM : .. 13-5

CHAPTER 14 MEMORY CONTROL AND MANAGEMENT

14.1 MEMORY MAP .. 14-1
14.1.1 Memory Partitions ... 14-2
14.1.2 Memory Modules .. 14-3

14.2 MEMORY MANAGEMENT .. 14-4
14.3 MEMORY ALLOCATION .. 14-6

14.3.1 Re-Allocating Memory ... 14-6

CHAPTER 15 TERMINAL HANDLING

15.1 DRIVER PROGRAMS .. 15-1
t5.1.1 Terminal Drivers ... '" 15-2
15.12 Interface Drivers .. 15-2

15.2 HOWTRMSERWORKS ... 15-2
15.2.1 Inputting Characters ... 15-3
15.2.2 Outputting Characters .. 15-4

CHAPTER 16 HOW AMOS HANDLES DEVICES

16.1 THE FILE SERVICE SySTEM .. 16-1
16.1.1 Special Device Drivers ... 16-3

16.2 DISK SERVICE SySTEM .. 16-3
16.2.1 Disk Structure ... 16-4

162.1.1 Account Structure .. 16-5

CHAPTER 17 SYSTEM INITIALIZATION AND STARTUP

17.1 SYSTEM STARTUP .. 17-1
17.2 SYSTEM INITIALIZATION ... 17-2

17.2.1 TheSYSTEM.lNI File ... 17-2

EPILOG

iii Introduction to AMOS

~PPENO/X A CONVERSION CHARTS

A.1 DECIMAL OR BASE 10 .. .-.................. A-1
A2 BINARY OR BASE 2 .. A-1
A.3 OCTAL OR BASE a ... A-2
A.4 HEXADECIMAL OR BASE 16 ... A-2
A.S CHART OF CONVERSION TO EQUIVALENTS FROM 1

(BASE 10) TO 100 (BASE 10) .. A-3
A.6 CONVERSION METHODS .. A-4

A.6.1 Binary to Decimal .. A-4
A.62 Decimal to Binary .. ~ A-S
A.6.3 Binary to Octal ... A-S
A.6.4 Binary to Hexadecimal ... A-6
A.6.S Decimal to Octal ... A-7
A.6.6 Octal to Decimal ... A-a

~PPENO/X B WHERE DO I GO FROM HERE?

B.1 IF YOU ARE THE SYSTEM OPERATOR ... B-1
B2 IF YOU ARE A GENERAL USER OFTHE SYSTEM B-1
B.3 IF YOU ARE A BASIC PROGRAMMER ... B-2
B.4 IF YOU ARE AN ASSEMBLY LANGUAGE PROGRAMMER B-2
B.S IF YOU HAVE SPECIAL USES FOR THE SYSTEM B-3

IPPENO/X C GLOSSARY

C.1 THE GLOSSARY .. C-1

VOEX

This book is the first step in your Alpha Micro education.

CHAPTER 1
INTRODUCTION

As the Alpha Micro software documentation library grows larger and widens in scope, we find that we are
talking to many different kinds of people. Our readers all have different needs and interests. And all of our
readers come to the Alpha Micro system with various levels of knowledge and experience.

Much of our documentation provides little background information. That is, many of our documents assume
that you are both familiar with computers in general and the Alpha Micro system in particular. Although such
assumptions are often necessary for the sake of brevity, if you are new to computers or to the AMOS system,
you may find that some of our documents just do not give you the information you need to really use your
system to its fullest. We realize that dealing with unfamiliar jargon can be frustrating as well as irritating.

We first realized that a book of this type might be useful to some of our readers when we began to get
questions about the concepts behind the AMOS system as well as questions about system operation. That is,
besides questions like "How does this command work?", we began to get questions like "What is hexa
decimal?". The major purpose of this book, then, is to fill in some of the conceptual gaps left by our other
documentation.

This book does not pretend to be a complete textbook on computers. If you have no experience with computers,
reading this book will not tell you everything you will need to know about them. It may, however, answer some
of the specific questions that arise when you read our other documentation. We know that different readers will
use this book in different ways- you may either want to read it straight through or, more likely, read just those
chapters that define the terms you want information about. (For a discussion of which questions each chapter
tries to answer, see Section 1.1, "How to Use This Book," below.)

When we began to organize this book, we asked ourselves, "What kinds of questions do people ask about this
system?" We found that the kinds of terms we wanted to define and questions we wanted to answer fell rather
neatly into three groups: questions that users with little computer experience might ask; questions about the
programs that are available on this system; and questions about operating system terms.

Therefore, you will want to read Introduction to AMOS if you fall into one of these categories:

1. You are ready to begin using your Alpha Micro system, but you have little computer experience.
You may have already looked at the system operations manual, AMOS Users Guide, (DWM-
00100-35), but you found it tough going because many of the terms were unfamiliar to you.
(For example, you may not be sure what "octal" is, or what a "file" or an "operating system" are.)

2. You have had some computer experience before, but are new to the AMOS system and would
like some idea of what kinds of programs run under AMOS. In brief, you'd like an introduction
to the various language processors, text processors, and utility programs on the system, without
having to read through detailed discussions on how to use them.

3. You're either an experienced AMOS user or have had experience with other computer systems,
but you are not a systems programmer and are not familiar with operating system concepts or
terms.

1-2 Introduction

You may be interested in the general concepts behind the idea of an operating system, and
you may feel the need for a very general overview of the entire Alpha Micro operating system.

Briefly, then, you will want to read this book if you want some background information about the software on
your Alpha Micro computer system. We hope that these chapters will get you off to a good start in using the
rest of the Alpha Micro software documentation.

Besides giving general information on computers and specific information on the AMOS system, this book
also contains an extensive glossary that includes definitions for many of the terms you will run into in other
Alpha Micro documentation. Also, note Appendix B, "Where Do I Go From Here?", which directs you to the
Alpha Micro software documentation you will want to read next after you've finished this book.

1.1 HOW TO USE THIS BOOK

Depending upon your prior experience or knowledge, you may want to read this book carefully, or just skim it
for specific details. The next few paragraphs discuss the contents of this book, and give you a better idea of
which chapters you may want to read.

Throughout this book, we try to let you know when a section is coming up that may be of more interest to a
specific group of readers than to our general audience. We also expect you to make your own judgments on
what topics you want to read about. For example, if you are not interested just now in exploring the differences
between" interpreters" and "compilers," we assume that you'll just skip the section in Chapter 1 0 titled "Compilers
and Interpreters," and read something of more immediate interest to you.

We have tried to minimize the interconnections between the chapters so that you can read only those chapters
you need, and leave the others until another time. Nonetheless, the chapters do build somewhat on the
material presented in earlier chapters. For example, if you aren't sure what "memory" is, you probably won't
want to read Chapter 14, "Memory Control and Management," until you have read Chapter 2, "What is a
Computer?". The paragraphs below list each chapter with the kinds of questions we tried to answer in that
chapter so that you can get some idea of where to find the information you need.

To suit the interests of our different readers, we've divided this book into three major sections:

PART 1- GETTING STARTED

Part I is specifically for those of you who are not very familiar with computers, and who would like a little
general information on computer concepts. These chapters talk about some common concepts you will often
run into when reading other Alpha Micro software documentation. We also introduce you to the Alpha Micro
Operating System (AMOS). The major questions these chapters answer are:

Chapter 2, "What is a Computer'r:
What are some of the physical components computers are made up of? (For example, what is a
"device," "CPU," "bus," "RAM," "memory," and "port"?) What areas of life are computers used in?
What are some of the advantages of the Alpha Micro computer system?

Chapter 3, "Who is AMOS?":
What are "hardware" and "software"? How do we communicate with a computer? What is an
operating system? What is the basic structure of the software on the Alpha Micro computer, and
where does AMOS stand in that structure? What are some of the features of the Alpha Micro
operating system?

Introduction

Chapter 4, "Data and the Computer":
What is "data"? Why does the computer represent data in 1 s and Os? What are the "binary," "octal,"
and "hexadecimal" numbering systems, and why do we use them on computers? What are "ASCII"
and "machine language"?

Chapter 5, "Introduction to Files":
What is the conceptual link between the way we organize information and the idea of a computer
file? How does the physical representation of data that we talked about in Chapter 4 become
structured into meaningful groups? What happens when the computer processes a file? How are
files organized on the disk? What is an "account," "account directory," "project-programmer number,"
"password," "disk block," "sequential file," and "random file"? What is "logging in"?

Chapter 6, "Permanent Data Storage":
What are the major permanent storage devices we use on the Alpha Micro computer system? What
are "System Disks," "System Devices," "hard disks," "floppy disks," "sectors," "tracks," "fixed disks,"
"platters," "disk packs," "disk cartridges," and "magnetic tape transports"?

Chapter 7, "Programs":
What is the concept of a "program"? What are "flowcharts" and "variables"?

PART 11- PROGRAMS AVAILABLE ON THE AMOS SYSTEM

1-3

The chapters in this section discuss the major system programs available on the AMOS computer system. You
may find these chapters of special interest if you have some prior computer experience, but are new to the
AMOS system. These chapters acquaint you with some of the major language and text processor programs
that run under AMOS, as well as some of the system utility programs, but do not go into any details on program
operation. Some of the questions these chapters try to answer are:

Chapter 8, "AMOS Utility Programs":
What are some of the uti lity programs available on the AM OS system? What are" HELP files," "hash
totals," and "the ISAM system"?

Chapter 9, "AMOS Text Processors":
What are "text processors"; what do you use them for? What are "text editors," "screen-oriented text
editors," "character-oriented text editors," and "text formatters"? What text processors are available
on the AMOS system?

Chapter 10, "AMOS Language Processors":
What is a "language processor," "computer language," "interpreter," "compiler," "assembler," "assembly
language," and "macro"? What language processors are available on the AMOS system?

PART 111- AMOS OVERVIEW

Part III is aimed at the programmer or general user of the system who wants more background information on
how AMOS works to provide a multi- user, multitasking computer system. That is, Part III gives a general
overview of the Alpha Micro Operating System, with information on the major components of AMOS, along
with discussions of command execution, user partitions, and system initialization.

These chapters also talk about what happens at the time of system startup, how different terminals and devices
are interfaced to the system, and how file accounts are structured on the disk.

Part III is nota guide for the System Operator (the person who manages the AMOS computer system). That is,
these chapters do not tell you how to set up a system, or how to allocate user partitions, run disk diagnostic
tests, etc. They do, however, give you the very general background information you will need before you go on
to the documentation aimed at the System Operator. Some of the questions Part III attempts to answer are:

r-4 Introduction

Chapter 11, "General Structure":
What is an operating system? (We explore this question in greater depth in this section than in
Chapter 3, "Who is AMOS?".) What does an operating system do for you? What are the components
of an operating system? What is the general structure of the Alpha Micro operating system? What
are "terminals," "buffers," and "monitor calls"?

Chapter 12, "Introduction to Jobs":
What is a "job"? What portion of AMOS handles jobs? What is "job scheduling"? What are "Job
Control Blocks," "queues," "quantum," and "job priorities"? What does "attaching terminals to jobs"
mean?

Chapter 13, "Command Processing":
What is a "command"? How does AMOS handle user commands? What is a "command file," "DO
file," "re-entrant program," "relocatable program," "transient program," and "Resident Program Area"?

Chapter 14, "Memory Control and Managemenf':
What is "memory" and Why is it important on a computer system? What is a "memory partition" or
"user partition"? What are "memory management," "bank switching," "memory allocation" and
"memory re-allocation"?

Chapter 15, "Terminal Handling":
What is a "terminal service system," "device driver program," "terminal driver," and "interface driver"?
What are "TRMSER" and "character echoing"? What are "half duplex" and "full duplex"? How are
characters transferred between AMOS and terminals?

Chapter 16, "How AMOS Handles Devices":
What is a "file service system"? What is a "logical I/O routine," "serial or parallel printer," "Dataset
Driver Block," "special device driver," "disk service system," "DSKSER," "disk format," "bitmap,"
"Master File Directory," and "User File Directory"?

Chapter 17, "System Initialization and Startup":
What is "system initialization," and why is it important? What happens during system startup? What
is the "system initialization command file (SYSTEM.INI)"? What does the SYSTEM.lNI file do for
you?

If you have little prior computer experience, we suggest that you read through the entire book, perhaps merely
skimming Part III if you are not interested at this time in how AMOS works.

If you are interested only in an introduction to the major programs that run on the AMOS system, read Part II.

If you are already familiar with using the AMOS system, but would like a general understanding of how the
components of AMOS work together, read Part III.

1.2 GRAPHIC CONVENTIONS USED IN THIS BOOK

To make our examples concise and easy to understand, we've adopted a number of graphic conventions
throughout our manuals. Below is a list of the conventions we follOW in this book:

Underlined characters indicate those characters that the cr'" jJuter prints on your terminal
display. For example, you will often see examples that begin with an underlined dot. The
underlined dot is the AMOS prompt symbo~ the symbol that the operating system displays
when it is ready for you to enter a command.

Introduction

(DWM-00100-xx)

1-5

The characters in the examples that you are supposed to type are not underlined.

Carriage return symbol. This symbol indicates the place in an example where you would
type a carriage return if you were entering the example to the computer. (The carriage
return key on your terminal keyboard is usually labeled RETURN or RET.) When we say
"Type a RETURN," we mean to say "press the RETURN key."

Part number symbol. Most of the references that appear in this book which are made to
other documents are followed by a part number. For example:

Refer to the AMOS Users Guide, (DWM-00100-35).

(If you order a document from Alpha Micro, be sure to refer to that document's part
number as well as its title.)

PART I

GETTING STARTED

The purpose of Part I is to familiarize you with the Alpha Micro computer. If you are new to the AMOS system,
but are already familiar with terms such as "files," "data," "program," "operating system," "disks," and "octal,"
you will probably want to merely skim Chapters 2 -7, and then turn your attention to Parts II and III for information
that is more specific to your AMOS system.

If you are new to computers, you will probably find the next few chapters to be of some help in filling you in on
some of the concepts you will need to know before you begin to use the AMOS system.

If at any time you are confused by a particular word or phrase, turn to the Glossary for a fuller explanation of
the word. You might also want to consult the Index to find other places in the manual where the word is used.

CHAPTER 2
WHAT IS A COMPUTER?

Imagine a society, if you will, which is dependent for many of its conveniences and services upon a vast
number of highly motivated, quick thinking slaves. Picture these slaves as basically educable, having total
recall and many inherent abilities, yet as being rather stupid when it comes to communicating with that society.
They do as they are told- exactly as they are told- but they make no allowance for what is really meant, if it is
left unsaid. To commands not precisely put in their own limited languages, they respond in highly unpredictable
and certainly useless ways. Yet they toil, without the slightest effort or distress, through any task assigned to
them as long as they are physically capable of doing the job in the first place.

The world-wide society in which we live is just such a society, of course. We increasingly benefit in our arts,
humanities, science, business and industry as we expand our use of these so-called slaves. Our slaves are
versatile machines known as computers.

2.1 DEFINITION OF A COMPUTER

A computer is most simply defined as a procedure follower: not too bright but very fast, and dependent upon
procedures written in a special kind of language. The procedure, or program, which the computer must follow
may vary in sophistication from one which is extremely simple or repetitive to one of almost incomprehensible
complexity. But the real strength and value of any computer is that it can be guided through an entire pro
cedure, however simple or complex, by a human programmer to solve real-world problems. And, the solution
is fully as accurate as the program itself and the information provided allow it to be.

Most people never get to the point of programming a computer, because the computer is already an almost
invaluable tool to them. It becomes to them a thing which appears to think for itself, to work for them, and yet it
remains relatively undemanding of their time and resources. Other people learn the limited languages
computers use and how to communicate their ideas for procedures to the computer. The power of a computp.r
is greatly amplified here, since it may do a specific task for a certain person or group. And some people
actually create computers, aiming the very design of the machine toward a specific field of tasks.

You do not need to understand the physical components of a computer in order to use it well. But a few
concepts can be helpful to you for gaining overall comprehension of what a computer is, especially if we talk
about those concepts at the outset. Physically, then, the computer is a machine comprised of electronic
circuits and their support mechanisms. Electricity moves through myriads of these circuits in a way which is
determined by several outside influences. First is the physical design of the circuits: electrons cannot travel
paths which were not first placed there deliberately by human designers. Second is the operating system,
which animates the computer and enables it to react to the outside world. The third determining influence, and
certainly the most important, is you as the user! You initiate every physical action of the computer, making it
work to obtain results you desire.

Only the physical construction of the computer becomes the limit to what the computer can do. Depending on
how it is set up, a computer can do calculations, control external devices, or store information (known as data)
in its electronic memory; or, it may do a combination of any of these, as most complicated applications
require.

2-2 What is a computer?

Keep in mind that there are very few mechanical applications that do not fall, or cannot be made to fall, in one
of these categories. This is why computers have become so useful, and why versatility on more powerful
computer systems is so necessary.

2.2 COMPONENT STRUCTURE OF A COMPUTER

Most computers are designed to be expandable; that is, they are designed electronically to support other
components which increase their overall versatility. We mention here some of the more commonly used
components which add power to a computer system:

Central
Processing Unit

Busses

Temporary
Storage Devices

Permanent
Storage Devices

The central processing unit (CPU) is the heart of any computer system. Internal
control of the system, processing all instructions and information, and overseeing
the interplay of other support equipment attached to the computer are a few of
the tasks handled by the CPU.

The architecture of the CPU is designed with particular applications in mind.
Some CPUs are designed for maximum versatility at a low cost, others are
highly dedicated for specific jobs, and still others are very powerful with a large
number of input and output ports and the ability to handle many tasks at once.

The CPU controls all the tasks occurring in the computer system, and it is the
CPU which follows the procedure called the program.

The busses are the actual paths which electronic signals travel upon among
the components of the system. They are important because they are the physi
cal means whereby the various components communicate together as the
busses pass working data between them.

The CPU must bring information into itself a small portion at a time for processing.
But it must have the whole group of information it must proceed through instantly
available to it. So, a copy of some information is taken from the place it is
permanently kept and inserted into temporary storage devices where the CPU
can access the information immediately. Information in temporary storage can
be manipulated, changed, or eliminated altogether, but is lost if power is cut off
from the system. (The most common temporary storage device is random
access memory; see below.)

NOTE: Any reference to "memory" in this book means temporary storage.
The concept of memory is of primary importance, since the CPU is unable to
consider any information not in memory. You will see the term often in various
contexts.

Before and after processing by the CPU, groups of information must be stored
in facilities that are not affected by power removal, and which are accessible to
the CPU (even if relatively slowly). These facilities are known as permanent
storage devices. Updated information can be written back to permanent storage,
perhaps to supersede and eliminate previous information. Information stays in
permanent storage until deliberately altered or removed.

The most common types of permanent storage devices are disk drives and
magnetic tape transports. We will talk about them more in Chapter 6, "Perma
nent Data Storage."

What is a computer? 2-3

Random-access Random-access memory (RAM) is quickly accessible memory into which data
Memory Devices is copied temporarily for some process by the CPU. Locations in RAM can be

drawn upon in any order. RAM is erased when power is cut off, and therefore is
used as a temporary storage device only.

Read-only
Memory Devices

Input and
Output Ports

Peripherals

NOTE: As used in the computer industry, the word "random" does not
necessarily imply a haphazard or unsystematic occurrence. In this case, it
describes any group of similar identities (Le., numbers, memory devices, etc.)
in which any single identity may be directly (Le., "randomly") accessed without
reference to other elements in the group.

Read-only memory (ROM) is a special kind of memory device known as
unchangeable memory. Specific procedures are entered once only and remain
regardless of whether or not power is applied. The procedures manufactured
into the ROM device can be read by the CPU as instructions or information,
but cannot be rewritten or altered in any way by the CPU or system.

Most often used as a device for getting initial instructions into the CPU when
the system is starting up, ROM also may be used any time a non-changing,
repetitive instruction is useful in a system. Elaborations on ROM include:
Programmable ROM (PROM), a user-defined, fixed memory system which,
after being manufactured, can be programmed on special electronic machines;
and Erasable Programmable ROM (EPROM), which the user may actually
change to contain other permanent instructions by using another kind of
special equipment.

InpuVOutput (110) ports are the physical method the various components of
the computer system use to interconnect. They are actually extensions of the
busses through hardware connection devices, with one important feature. They
are provided with temporary storage devices so that information traveling on
the particular bus may be stored until the receiving system component is ready
to accept the information, and meanwhile the transmitting component can
direct its attention somewhere else.

This term applies to all the devices actually controlled by the CPU which in
turn feed responses back to the CPU, if necessary. Some very common peri
pherals are: interface boards, whereby the CPU can interact with components
of a different design architecture; CRT or hard copy terminals, by which the
users enter data into the computer and upon which data is returned by the
computer; hard (metal) storage disks and "floppy" soft (mylar plastic) storage
disks, which increase the system's permanent data storage; disk controllers,
which control hard and floppy disks to present data quickly to the CPU; printers,
which type data out on paper; magnetic tape recorders, which are also data
storage devices; telephone equipment (especially in the reception or trans
mission of data from one computer to another); card sorters and readers, when
data is recorded on punch cards; and paper tape readers, when data is recorded
on rolls of paper via punched holes.

2-4 What is a computer?

2.3 WHERE COMPUTERS ARE USED

Today's infinitely varied world-wide society makes great use of computers and their peripheral devices. From
the small single-user systems where individuals find challenge and entertainment, to the gigantic corporate
or military systems supporting thousands of users simultaneously, these cooperative machines have become
indispensable to many millions. Here are some examples of the ways computers are being used:

As personal computers - Small computers have become microcosms of the very powerful
systems. They are used in homes or very small businesses, in self or formal education, or as sophisti
cated games.

In business - Computers are in use in every aspect of business, including accounting, word
processing (such as the text you are reading), inventory, marketing and sales, and in service support.
Computers free many persons from chores that require repetition and strenuous precision, allowing
them to apply themselves to more interesting endeavors.

In manufacturing and ~onstruction - Computers are employed as major tools in both the design
and actual construction of products. Computers are being used in new ways by engineers to control
machines in order to relieve workers from tasks requiring monotonous precisron. Manufacturers
are also finding ways to make computers both control and protect the environment for the comfort
and safety of society.

World-wide interdependence - Virtually every modern military establishment depends heavily
on the performance of computers, large or small. Telecommunications would be impossible at the
current levels of usage around the world if it were not for the expandable complexity of computers.
International businesses would simply be unable to keep track of their assets and liabilities without
the central storehouse of data processed by computers.

Vast government programs - Our military network is beyond the comprehension of any
individual, yet it is well cared for by a civilian government due to the extensive coordination possible
using computer data. The military also depends upon the speed and accuracy of numerous kinds
of computers aboard ships, aircraft and missiles. The National Aeronautics and Space Administra
tion, in its space programs, calculates in moments what a man would take centuries to calculate by
hand. As a single example, N.A.S.A uses incredibly complex formulae of rate, time, stress, and so
on as it plans and executes a rocket launch. And in the civilian world, every bureau of the govern
ment keeps countless details available using the vast storehouses of memory accessed by ex
tremely powerful computers.

2.4 THE ALPHA MICRO SYSTEM

Alpha Micro provides the low cost and highly expandable versatility that the small or medium-sized business
or profession is most likely to require. At their inception, these endeavors are least likely to spend huge dollar
amounts to buy the computer power they anticipate needing later on, yet they also do not want to be limited
later by an inexpensive purchase they make now.

Below we list a few of the ways Alpha Micro solves this dilemma for the professional user. All of these concepts
will be discussed elsewhere in this book in detail; this is an overview of the advantages of the Alpha Micro
system.

1. The commands the CPU responds to are not an integral part of th-.; operating system itself.
Therefore, they can be replaced with new versions of those commands when you want to
update your system software.

What is a computer?

2. The number of commands is also expandable; that is, if you require a special command, you
may write the command and add it to the system. Thus the system remains precisely what you
require. And, when Alpha Micro develops a command for general use, you can conveniently
add it to your system.

3. When the system starts up, all peripheral equipment that is incorporated into your system is
defined to the operating system. This system initialization is set by you. Therefore, expanding
the system to contain more terminals, printers or other devices is simply a matter of adding the
devices themselves, then redefining the system initialization procedure and adding programs
to control those devices.

4. Peripheral device independence allows a great deal of expansion (to the limits of control
hardware) once the added device is included in the system initialization procedure. The system
therefore can grow as the number of users increases, with no added expense but the cost of
the device itself.

5. Timesharing among users is available, of course. In addition, as a user you may actually
timeshare with yourself. (This is called multitasking.) For example, you may print a listing and at
the same time you can access a file to edit it. Also, several users, each programming the
computer to do different tasks, may use either the same language or different languages.

2-5

Neither the personal accessibility of the small system nor the power of the relatively large system is outside the
range of the Alpha Micro Operating System. The computer is an important tool in our modern society. Because
the professions and business are so large a share of that society, Alpha Micro brings to the professional user
a number of versatile, economic and expandable advantages. The chapters that follow define in much greater
detail the specific means by which AMOS may be put to use for your precise needs.

CHAPTER 3
WHO IS AMOS?

AMOS (the Alpha Micro Operating System) is the heart of the Alpha Micro computer system; it is very obedient,
has infinite patience, and is extremely quick and efficient.

Think of it as a cross between a master switchboard operator, language translator, dispatcher, and administrator.
Because of AMOS, you can post today's inventory changes while someone else is updating payroll data. At
the same time, another person might be composing and printing a book chapter while yet a fourth worker is
creating his or her own program that works on calculus problems. AMOS makes possible the complicated
interactions that arise as a result of multiple activities on the same computer at the same time.

We will talk in more detail about AMOS in Part III, "AMOS Overview," but we would like to give you a brief
introduction to AMOS now. This introduction discusses the concept of an operating system, the basic structure
of your Alpha Micro software, and AMOS's special abilities.

3.1 COMMUNICATING WITH THE COMPUTER

In the last chapter, we introduced you to some of the elements that make up a typical computer system. We
usually call these physical components hardware. As we've already pointed out, computers are very fast, but
rather straightforward. A computer will do nothing unless you give it instructions. The instructions that make
the computer function are commonly called software. The purpose of software is to give you a way to
communicate with hardware.

At its most primitive, this form of communication can consist of using switches or keys to enter numbers that
the CPU can directly interpret as instructions.

These fundamental instructions make up what is called the instruction set of the computer, and usually are 01
very limited scope. For example, a typical machine instruction might tell the CPU to move a number from one
memory location to another.

To get the computer to perform one simple function (for instance, to copy data from one disk to another) you
might have to enter hundreds of these numbers. (Such a group of instructions is called a machine language
program.) But, the purpose of a computer is to save you work, not to cause it! Therefore, most computer
systems allow you to communicate with your computer in a form that is much more convenient for humans. To
make life easier for you, the more advanced computer systems provide a set of programs called the operating
system or monitor.

Since the CPU only understands numbers that represent its instruction set, it has no idea of what you are
trying to say if you type in the word:

HELP [RET)

With AMOS (the Alpha Micro Operating System) acting as your translator, you can enter instructions in a form
that is natural for you (that is, as letters and words); the operating system translates your orders into a form that
the CPU can understand. Of course, the operating system has a finite vocabulary. If you type in:

HELP [RET)

3-2 Who is AMOS?

~MOS gives you a list of topics it can supply information about. This is only because that ability has been
programmed into AMOS. If you type in something outside of its vocabulary, for example:

WHAT WAS GEORGE WASHINGTON'S HORSE'S NAME? [RET]

~MOS replies:

?WHAT?

indicating that it is not able to understand you. We call the full range of AMOS's vocabulary the AMOS
:;ommand language.

rhe operating system allows you to give much more powerful and comprehensive orders to the computer
than if you were forced to communicate directly in machine instructions.

Besides giving you a convenient way of communicating with the CPU, an operating system also provides a
'nyriad of other services. It connects and supervises all of the various programs that take care of such things
:is communicating with terminals, writing data to the disks, running several users on the system at the same
time, and finding disk files. (In Section 3.3, "The Alpha Micro Operating System," we discuss some of AMOS's
:;pecial abilities.)

fou could, of course, write your own programs to do all of the things you want to do on a computer system.
But, then you would have to worry about all of the complicated procedures involved in transferring data
::>etween terminals and the computer, disks and the computer, etc. Getting all of those programs to work
together without conflicting is a problem of the highest magnitude.

rhe purpose of an operating system is to make a computer look simple. Few people really know all of the
:::omplex and convoluted actions that take place behind the scenes when we ask AMOS to do something like
:::opy a file from one disk to another. Fortunately, the operating system takes care of performing the trick for us,
:ind we don't have to worry (or even think about) the intricate machinery behind the magic.

3.2 SYSTEM STRUCTURE

Ne'li go into much more detail on this subject in later chapters, but it is important at this point to get a feeling
ror the structure of your system. At the root of the structure is the hardware- the computer itself and the
::>eripheral devices that allow you to enter data into the computer and to store, display, or print data.

Enabling you to communicate with the computer (by translating your orders into machine language) is the
::>perating system, AMOS. (For a discussion of the various components within AMOS itself, see Chapter 11
'General Structure." For now, just remember that AMOS is simply another program, even though it oversees
:ill other programs that run on the system.)

Supported by the AMOS program in this hierarchy are other system programs, such as: the screen-oriented
text editor, VUE; the BASIC compiler, COMPIL; and the BASIC run-time package, RUN (which executes
BASIC programs). AMOS oversees the running of every program on the system.

Sometimes other programs are at even a higher level in this structure. for example, when you execute a
BASIC program, it runs under control of RUN, the BASIC run-time package. RUN, in turn, is controlled by
~MOS. The BASIC program is thus higher in the structure than AMOS or RUN.

Who is AMOS?

The diagram below illustrates this system structure:

BASIC Program

BASIC Run-time
Package (RUN)

PASCAL Program

PASCAL Language
Processor

Text Editor

AMOS

Computer Hardware

Figure 3-1
Sample System Structure

3-3

BASIC Compiler
Program (COMPIL)

Things are really a little more complicated than indicated by the diagram above (which lists just a few of the
components of your system), but you now have the idea that many levels can exist within your system software.
When you are at the level where you can communicate with AMOS, we say that you are "at AMOS command
leveL"

The reason we emphasize the hierarchial nature of this structure is that it helps explain why entering a com
mand phrased in the vocabulary that the BASIC language processor understands, for instance, doesn't work
when talking to the operating system. For example:

LET AVERAGES=(B*C*D)/365

means nothing to AMOS, but is a perfectly valid statement when talking to BASIC. At AMOS command level,
you can communicate directly with AMOS. When you are communicating with BASIC (that is, when you are
"inside BASIC"), you can talk with BASIC, but not directly with AMOS. When you are using the text editor, VUE,
you can enter VUE editing commands, but cannot enter BASIC commands or AMOS commands.

Often the particular program you are talking to displays a distinctive symbol called a prompt which serves to
remind you which program you are communicating with. For example, when you are at AMOS command level
you see a dot. This is the AMOS prompt. When you are inside EDIT (the Alpha Micro character-oriented text
editor), you see an asterisk. A prompt tells you that the program you are communicating with is ready for a
command.

3-4 Who;sAMOS?

3.3 THE ALPHA MICRO OPERATING SYSTEM

The complexity and sophistication of the Alpha Micro system requires a sophisticated and powerful operating
system. One mark of the flexibility of the AMOS system is that most of the components of the operating system
are not "canned into" the operating system as they are in some other computer systems. For example, the
programs that allow you to access terminals and devices are not physically part of the operating system, but
are separate programs called by AMOS. The same is true of the commands you can enter to the operating
system. This means that you can continue to expand the capabilities of your system, simply by writing your
own assembly language programs or by adding new device driver programs and commands as Alpha Micro
makes them available.

If you have had some experience with other computer operating systems, you may be interested in taking a
look at some of the features of AMOS:

Command
Language

Device
Independence

Timesharing

AMOS translates your orders and performs the appropriate action. For
example, when you type DIR followed by a RETURN, you are telling AMOS
that you want to see a directory of the files in your account. (Files and accounts
are structures AMOS uses to organize data on the disk. We'll talk more about
them in Chapter 5, "Introduction to Files.") AMOS allows you to communicate
with programs other than itself. For example, by typing "BASIC" followed by a
RETU RN, you tell AMOS that you want to communicate with the BASIC language
processor. (BASIC is an easily learned language that you can use for writing
computer programs.) You can also instruct AMOS to run programs you have
created yourself. The set of valid orders you can give AMOS make up its
command language.

AMOS talks with the various hardware components that control and interface
with the peripheral devices on your system (disks, magnetic tape units, printers,
terminals, etc.).

One of the strengths of the Alpha Micro computer system is that it allows you to
change the configuration of your system (that is, add new disk devices, new
terminals, etc.) by adding new software programs that handle those devices.
When your programs communicate with hardware (for example, when a program
sends data to a printer), the programs go through AMOS who is able to do the
actual device access. The fact that you can add new devices to your system at
any time, and that the system or a command is not restricted to any specific
type of disk or terminal, is called device independence.

Besides overseeing the tasks you want to perform, at the same time AMOS
also handles the needs of other users on the system. AMOS allocates a certain
amount of CPU time for each user on the system. When you have used your
allotted share of time (usually 1/60 of a second), the CPU turns its attention to
another user. However, the computer can perform so many actions in such an
incredibly short time, it is not usually evident that you are sharing the CPU with
other users. I n other words, the CPU returns its attention to you so quickly that
you are often not aware of any delay between your command and the com
puter's response. This ability to handle several users on the system at the
same time is called timesharing.

In addition to allocating CPU time, AMOS also allocates other system resources
such as disk space, memory use, printer use, etc.}. You can instruct AMOS to
let you perform more than one task at a time (for example, run a BASIC program
at the same time that you are printing something). This process is called
multitasking.

Who is AMOS?

Multi -
programming

Memory
Management

Unlike some timesharing systems, AMOS allows users running at the same
time to run different programs. This ability is called multiprogramming. For
example, you might be talking to the BASIC language processor at the same
time that another user is executing a program written in the PASCAL language.
Meanwhile, yet another user might be creating an office report using one of the
system text editing programs.

AMOS also has another ability that is rare in microcomputers: it can access
more than 64 K of memory by using an option called memory management. A
CPU that deals with 16-bit numbers can only reference 65,536 memory locations
(that is, 64K of memory), because 65535 is the largest number we can re
present in 16 bits. (Each location in memory is referenced by a unique number
from a to 65535.)

This is a severe restriction, because it limits the number of users that can run
on one system at a time. (All users on the system require a certain amount of
memory to perform their tasks. Also, the operating system itself needs a certain
amount of memory in which to work.)

On the Alpha Micro system, however, you can set up more than one set (or
bank) of memory so that AMOS can select among different banks. For example, you
may be using memory locations 16384-32768 in Bank One while another
user accesses memory locations with the same addresses, but in another
bank. The system still restricts each individual user to a maximum of 64 K of
memory, but you can have several different sets of 64K on the system. For
more information on memory management, see Chapter 14, "Memory Control
and Management."

3-5

We will be talking more about most of these concepts in Part III, "AMOS Overview." In the next four chapter~
we discuss other general computer concepts such as "data," "files," "storage" and "programs." If you are
already familiar with these terms, you may want to simply skim these chapters before you begin to read Part II
"Programs Available on the AMOS System."

CHAPTER 4
DATA AND THE COMPUTER

Before we go on to describe how AMOS is able to handle the many tasks you saw in the previous chapter, and
many more which you will see later in this book, we will reduce such concepts as data, information, programs,
numbering systems, ASCII and machine language to their simplest terms. We will also consider how a computer
can communicate with the real world, and especially with you as the user.

Remember that a computer is an electronic device which merely conducts electricity through a vast maze of
switch-like circuits in a way determined by three influences. One is the physical architecture of the computer's
components and circuits; another is the operating system which vitalizes the computer and makes it respon
sive to the outside world. But, most importantly, you determine the computer's activities because it must
handle data given by you and return results you desire.

4.1 WHAT IS DATA?

The word data is a general term for the symbols used to describe ideas, objects, situations, values or abstrac
tions when they are collected for logical processing. We use the term as it applies to symbols presented to a
computer, which is a logical processor. A computer cannot recognize the nearly unlimited varieties of content
and structure symbols you can absorb from any information you are exposed to. It is an electrically oriented
machine, limited to processing only a subset of information in small steps when expressed in a form (still
comprehensible to you) that can be broken down into combinations of two numeric symbols (1 and 0). There
fore, data is defined as a precisely structured, specific kind of information retaining meaning for you, but which
can be broken down by the computer into a series of physical units of electricity which are present or absent at
a given point, in a given instant, within the computer.

4.2 THE BREAKDOWN OF DATA

Let's imagine for a moment a single switch, controlling, we'll say, a light bUlb. The switch only has two states: it
is either on and the light is lit, or it is off and the light is out. Since electricity is at the bulb and doing work when
the switch is on, we'll label the ON position with a 1. When the switch is off, electricity is not present, so we'll
label the OFF position with a O.

Remember, the final result at the light bulb results from whether or not it has electricity. Setting the switch to 1
lights the bulb, or could be said to return a 1. Setting the switch to 0 turns off the bulb, or returns a O.

Let's say you are stationed at the switch, and the light bulb is positioned to illuminate a room. Let's also
assume a director, who (for reasons you neither know nor care about) speaks commands which are directed
to you regarding the illumination of that room. When the director says "Light, go on," you recall that the words
"go on," though they do not appear on either of the two labels on your switch, do mean "= 1." You quickly
throw the switch to the position labeled 1. When the director says, "Light, I'm done looking now; you may shut
off," you again search your memory to see what that instruction equals. When you do not find it, you either
ignore the director or do what you've remembered to do when the director gives you an unexecutable com
mand. That is, you can't handle his information because he didn't present it to you as an instruction, so you're
not obligated to position your switch in the way that will return to him the desired "= 0" he was hoping for.

4-2 Data and the Computer

If the director says "Change," and that data recalls to you an instruction that resides in your memory telling you
to push the switch the opposite direction, he gets his results as the light bulb goes out. You were able to
execute several kinds of instructions because he gave you data in such a way that you could interpret it as
instructions regarding the two positions on your switch.

In this example, our director was actually the user employing the computer as a tool to help accomplish some
purpose of his own. You were the operating system, a model of AMOS as you saw it in chapter 3. You performed
two different kinds of data handling in the example, though there are many more. First, you pulled interpretations
out of your memory to convert data words into the numbers 1 and 0, which represented performable instruc
tions. Second, you pulled out programs to perform the specific instructions and caused the switches, or
physical hardware, to pass on various combinations of 1 and 0 as the presence or absence of electricity.
Control of the light bulb, of course, was the result the user (director) wanted as he gave you specific data to
convert to instructions, and then only as a tool to help him see into the room. With the proper data input, he did
just that.

!n a computer, there are literally millions of microscopic, electronic "switches" which control the electrical
passage of data. Yet each switch that can pass data is set either at 1, providing an electrical ON (electricity
present), or at 0, providing an electrical OFF (electricity absent), to the next switch down the line. The interaction
of these switches, and the trillions of possible electrical paths they combine to form, provide the physical
means for a computer to process data for the user.

4.3 BINARY NUMBERS AND DECIMAL NUMBERS

So that data can be represented using only 1 s and Os, the binary, or base 2, numbering system is the math
ematical foundation upon which the computer is built. In the binary system, only 1 and 0 are used, and all
quantities in the numbering system can be represented by a combination of those two symbols.

We commonly use the decimal, or base 10, numbering system, and you are familiar with these symbols: 0,1,
2,3,4,5,6,7,8, and9. When you see the combination of two symbols 1 andO, or10, you call them bya special
name "ten," but they are really ONE- ZERO, base ten. When you count to "ten" you say, "(zero,) one, two, three,
four, five, six, seven, eight, nine, ten." You identify by various sound-symbols the numerals representing
quantities. I n the binary system, you do the same thing, but to count quantities you say, "(zero,) one, one- zero."
One-zero in base two describes the same quantity as represented by the symbol 2 in our familiar decimal
system. The terms "binary" and "base 2" indicate that this numbering system contains only two symbols to
represent all quantities in the system.

Each "place" in a decimal number represents a power of 10. For example, the number 204 (base 10) means:

2 hundreds, 0 tens, and 4 ones (or 2X102 + OX101 + 4X100)

In the same way, each position in a binary number represents a power of 2. For example, the number 11001100
(base 2) means (in decimal notation):

1 one hundred twenty eight, 1 sixty four, 0 thirty two, 0 sixteen, 1 eight, 1 four,O two, and 0 one

(or 1 X27 + 1 X26 + OX25 + OX24 + 1 X23 + 1 X22 + OX21 + OX20)

which again equals 204 (base 10).

Conversion from decimal to binary and back again is a little ponderous for humans, but easy for computers.
Since it helps to have the concept, we detail a few of the very basic methods of decimal-to- binary and binary
to-decimal conversion, along with conversion methods for other numbering systems, in Appendix A. Refer to
any textbook on the subject for more detailed exploration. But keep in mind that the chart and explanations
are dealing with alternate numeric symbols which represent the SAME quantities.

Data and the Computer 4-3

4.4 ASCII

There are no purely mathematical values equivalent to non- numeric symbols. Since you intend to symbolize
not only quantities but ideas, objects, situations and the like as your data, you need a way to represent those
non- numeric symbols by numbers of some sort, since the computer can only handle numbers. Therefore,
computer designers and operators have agreed to use a system that simply assigns numeric values to non
numeric symbols. It is called ASCII, the American Standard Code for Information Interchange. (See Appendix
A, "The ASCII Character Set," in the AMOS System Commands Reference Manual, (DWM-00100-49), for a
complete listing of the conventions of symbols and their assigned numbers in the popular (among computer
users!) octal and hexadecimal numbering systems. See Section 4.6 of this chapter for further explanations of
those numbering systems.) Using ASCII, data presented to the computer can consist of symbols for letters,
numbers, punctuation or control characters. The computer first recognizes the ASCII numeric equivalent of
the symbol in the binary numbering system, which is converted to electricity right at the input terminal via
hardware. Then the operating system checks to see what that binary data means. As we saw in our example
above, valid data is operated upon, while invalid data causes some unintended return to the user from the
computer.

As an actual example of an operating system recognizing and acting upon valid data, use one of the AMOS
commands called DING (which rings the terminal bell). Type DING 3 followed by a RETURN after the AMOS
prompt symbol which appears on your terminal display:

.-DING 3 [RET)

You will immediately hear three rings or beeps. But the computer in the meanwhile took every key as you
pressed it, converted it to its ASCII value in binary, and placed it in a buffer, or temporary storage area. Then,
when you pressed the RETU RN key, a string of data in the form of electricity was accepted by AMOS that we
symbolize as:

0000 0000 0100 0100
0000 0000 0100 1001
0000 0000 01 00 111 a
0000 0000 01 00 0111
0000 0000 0010 0000
0000 0000 0011 0011

Which equals upper case D
Which equals upper case I
Which equals upper case N
Which equals upper case G
Which equals a space
Which equals 3

AMOS recognized the DING command and executed it. The DING program determined that three electrical
signals were required at the bell circuit, properly spaced and so on. When the command was processed, you
heard the tones.

I ncidentally, as written above, we have included spaces after every four digits of the binary number. This is for
clarity, and not inherent to binary numbers or commonly accepted representations of them. Elsewhere you will
see 16-digit binary numbers expressed with different spacing or with no spaces at all.

4.5 MACHINE LANGUAGE

Once data is represented in ASCII binary equivalents, it must be stored temporarily or permanently, reproduced,
or otherwise computed. The operating system controls this computation. The computation is done physically
(that is, in hardware) by the CPU and some of its peripherals, which are actually responding to the presence or
absence of electricity as described in Section 4.2 of this chapter. Machine language is the set of electrical
patterns (represented as 1 s and as to indicate the presence or absence of electricity) which, by taking various

4-4 Data and the Computer

paths through the architectural structure of the CPU, make the CPU act as if it is responding to instruction or
data inputs. In other words, machine language is the one actual set of symbols directly converted to electricity
that a given computer can physically handle. All symbols not found in the set of machine language instructions
must first be transformed by some method into machine language to be acceptable to the CPU.

A particular machine language is unique to one type of CPU, because every CPU is deliberately designed by
electronics engineers and scientists for different specific or general applications.

Once converted into machine language by the computer, data is both handled and stored in its binary form.
Storage is mandatory for the computer to do any significant work with data. But data is almost never stored nor
handled at a rate of a single a or 1 (electrical absence or presence) at a time. Those electrical states and their
representative symbols a and 1, which are known as bits, are usually handled many at a time. The Alpha Micro
Operating System is built around a CPU, for instance, that handles up to 16 bits of data at the same instant.

Those 16 bits arrive simultaneously on a 16-lane freeway known as the data bus. That is, electricity may be
present on some of the data "lanes," while on the others electricity may be absent. (There is no difference in
significance between the presence or absence of electricity at a given point, since both represent data of
some kind. Bits are therefore not usually considered for their electrical value, but for the data they represent.)
There are 65,536 (base 10) possible combinations of bits arriving or departing on the data or other system
busses per machine cycle (which is measured in parts of millionths of seconds). This includes:

0000 0000 0000 0000 which equals a
and:

1111 1111 1111 1111 which equals 65,535 (base 10), also known as 64K

There are some conventional terms regarding the grouping of bits. In most systems, 8 bits together are known
as a byte. In the Alpha Micro system, tw08-bit bytes are known as a word. In some systems where 8 bits are
the maximum unit, a byte and a word are synonymous.

The example below shows a "typical" word of data which might appear in a given cycle traveling one way on
one of the bi-directional busses.

r - - - - - - - - -0- - - - - - - - - ...
>- - - - - - - - - - 0- - - - - - - - -.
>----------0---------.
r---------O---------.
>- - - - - - - - - -0- - - - - - - - -.
>----------0---------.
>----------0---------.
r - - - - - - - - - 0- - - - - - - - -.

>- - - - - - - - - -0- - - - - - - - -.
>----------1---------.
>----------1---------.
>----------0---------.

>----------0---------. >----------1---------.
>----------0---------.
>----------0---------.

Data and the Computer 4-5

If you type the uppercase letter X followed by a AETU AN on your terminal keyboard, the CPU sees the above
word come in on its data bus. AMOS might not recognize that character as meaning anything significant, so it
queries you:

?X ?

In order for the computer to display the message above, it must return to your terminal in 8 separate cycles
these binary numbers:

0000 0000 00 11 1111
0000 0000 0110 01 00
0000 0000 0010 0000
0000 0000 0010 0000
0000 0000 0010 0000
0000 0000 0010 0000
0000 0000 0010 0000
0000 0000 0011 1111

which are interpreted by the terminal via ASCII to read?X ? when displayed.

Bytes are usually further combined into large groups and quantified with the term" K," for "kilobytes" (e.g., 1 K
or 64 K). The term was defined by engineers and scientists working with binary numbers who wanted a short
and handy symbol to represent 210 (two to the tenth power), or1024, and multiples of it. Therefore, 32 Kbytes is,
for example, 32,768 bytes and 64K is 65,536 bytes. The real-life handling of data, of course, finds large
groups of bytes or words very commonplace.

Still another term for very large groups of bytes is "M," for "megabytes." 220 (two to the twentieth power), or 210

times 210, equals 1,048,580.1 megabyte(or1 Mbyte) is 1 ,048,580 bytes. Sometimes a group of data is several
megabytes in length.

4.6 MORE NUMBERING SYSTEMS

As we said earlier, binary code is ponderous. If you need to program the computer in machine language (in
the interest of program speed, for instance), you would find it extremely difficult to do lengthy or tedious
programs the necessary byte or word at a time.

Bytes and words are oriented around multiples of 2 (Le., 8 and 16), and are expressed in their normal form
using binary numerals. But by using the numbering systems based upon those multiples of 2, it becomes
possible to write binary values in what can be described as binary shorthand.

From the outset, please understand that the computer interprets any shorthand methods, expanding them into
binary. There is never anything but binary in the machine. It is for the convenience of the programmer that
shorthand methods are used. They are nothing more than a way to form shorter expressions of binary data;
they are used because they require less symbols per value, and are generally easier to comprehend than their
binary equivalents.

4-6 Data and the Computer

4.6.1 Octal

The octal numbering system, or base 8, is so called because it uses eight symbols to represent all quantities in
the system. As a method of binary shorthand, it reduces the number of digits expressing a certain value as
written in binary. A value expressed in sixteen digits (base 2) can be expressed in six digits (base 8). For
example:

1 101 010 111 001 110 (base 2) = 1 5 2 7 1 6 (base 8)

And an eight-digit (base 2) numeral can be expressed in three digits (base 8):

10 01 0 111 (base 2) = 2 2 7 (base 8)

A quick method of mental conversion from binary to octal (once familiar with base 2, of course) is to make sure
there is a multiple of three digits in the binary expression; if not, add or imagine placeholders (zeros) to the left
until there is. Then, from left to right, convert each group of three digits into its octal equivalent just as you
would its decimal equivalent. You will notice that no digit exceeds a 7:

000=0
001 = 1 (base 8)
01 0 = 2 (base 8)
011 = 3 (base 8)
100 = 4 (base 8)
101 =5 (base 8)
110 = 6 (base 8)
111 = 7 (base 8)

Therefore, the sixteen-digit binary number 1101010111001110 seen above is converted:

[(00)1]
1

[101]
5

[010]
2

[111]
7

[001]
1

[110]
6

Once again, remember that the octal system is merely a way to express binary numbers in shorthand, and is
not something the comput~r recognizes except in its ability to convert it to the required binary.

4.6.2 Hexadecimal

The hexadecimal, or base 16 numbering system (often known as hex), is so called because sixteen unique
symbols are used to represent all values in the system. A binary value of sixteen digits is expressed in four
digits (base 16). Here is an example with the same number we have been using:

1101 0101 1100 1110 (base 2) = 05 C E (base 16)

An eight-digit binary numeral can be expressed in two digits (base 16):

1001 0111 (base 2) = 97 (base 16)

Data and the Computer 4-7

Quick mental conversion to hex is similar to octal except that binary digits are placed in groups of four rathe
than three. Again, placeholders are implied. Alphabetic symbols A, B, C, 0, E and F represent numeric value!
also, and are not to be considered as letters. Convert the groups of four from left to right into their equivalen
base 16 value:

0000=0
0001 = 1 (base 16) = 1 (base 10)
0010 = 2 (base 16) = 2 (base 10)
0011 = 3 (base 16) = 3 (base 10)
0100 = 4 (base 16) = 4 (base 10)
0101 = 5 (base 16) = 5 (base 10)
0110 = 6 (base 16) = 6 (base 10)
0111 = 7 (base 16) = 7 (base 10)
1000 = 8 (base 16) = 8 (base 10)
1001 = 9 (base 16) = 9 (base 10)
1010 = A (base 16) = 10 (base 10)
1011 = B (base 16) = 11 (base 10)
1100 = C (base 16) = 12 (base 10)
1101 = 0 (base 16) = 13 (base 10)
1110= E (base 16) = 14 (base 10)
1111 =F(base16)= 15(base10)

Therefore, our sixteen-digit binary number is converted to hex:

[1101)
o

[0101)
5

[1100)
C

[1110)
E

Remember that this also is simply a method of shorthand to make binary numerals a little more handy to thE
programmer. Remember also that the characters A, B, C, D, E and F are simply value representations for thE
binary numbers 1010 through 1111.

4.7 THINGS TO COME

In the next chapter 'we will deal with larger groups of data made up by a multitude of bits contained withir
bytes or words. We will introduce and expand upon the idea of files, which are useful groups of data related b~
subject matter. Files are actually processed and saved as 1 s and Os, but may be returned to you in ASCII
characters as octal, hexadecimal or binary numeric symbols. Files exist to allow you to comprehend quantities
of related information, even though the computer still reduces that information to a form it can handle.

CHAPTERS
WHAT IS A FILE?

We've already brought to your attention the fact that the computer does nothing but handle data. Whether that
data is your company's payroll, a set of scientific calculations, or a book chapter, the computer can transfer,
manipulate, erase, and transform that data with incredible quickness compared to the speed with which a
human could perform those tasks.

Everything you do on the computer somehow involves handling data. Now that you know how the computer
represents data internally, it's time to talk a little about how you can access that data. This chapter discusses
the basic unit of data organization- the file- and how the computer handles files. (NOTE: I BM system users
may know files as "data sets.")

5.1 HANDLING DATA

To begin our discussion of how the computer manages data, let's assume that you run an office which proces
ses large amounts of information. How might you manage the problem of efficient data processing?

Suppose you have a very large number of filing cabinets. These filing cabinets hold a great deal of
data- in fact, each drawer may hold hundreds of manila file folders that contain memos, reports,
numbers, etc.

Accessing the information in the files takes a little while. (You have to find which drawer holds the
information you need, and then you must go through the physical process of pulling out the proper
manila folder.) So, every time you want to work on a particular file, you don't want to have to go get it
from the filing cabinets. Besides taking time, this process keeps anyone else from working on the
file at the same time. Therefore, you have ingeniously set up a photocopy machine next to the
cabinets. When you are going to be working on a particular file, your administrative assistant quickly
copies the file you want to work on, places the copy on your desk, and puts the original back in the
filing cabinet. At your desk, you can work quickly and easily on the file.

When you are finished with a file, your administrative assistant often places the edited file back into
the filing cabinet, replacing the original file. Sometimes, of course, you don't change the file, but
simply wantto use it or look at it. In this case, the administrative assistant just throws away your copy
of it when you are done, without updating the original copy in the filing cabinet.

The only possible problem with this scheme is that you have an overly zealous janitorial staff that
throws away any files left on your desk at the end of the day. Before you quit for the night, therefore,
you must remember to place the files on your desk in the filing cabinet if you have changed them
from the originals, because your desk is only a temporary storage area.

Imagine now that you have ten to fifteen people in your office, all doing the same kind of data
processing you are doing. Obviously, all of these people are going to have to go through your
administrative assistant; otherwise, chaos is going to result as one worker goes to the filing cabinet
to get a file that another worker is almady photocopying. The administrative assistant assigns each
worker his or her own locking filing cabinet drawer, and makes sure that workers don't put their files
back into the wrong drawers.

5-2 What is a File?

This limited analogy gives us a starting point for our discussion. The computer, too, has very large permanent
storage facilities and much smaller temporary storage areas. This distinction between permanent and tempo
rary storage is a very important one.

The devices most frequently used for permanent storage are disk drives and magnetic tape units. These types
of devices store data by magnetically writing the data onto a recording surface (somewhat as a tape recorder
"writes" music to a tape). We call this permanent storage because the data remains on the recording media
even if you turn off the power to the storage device. You may, of course, erase any of the data you no longer
need.

Since the most commonly used permanent storage device is the disk drive, the rest of our discussion will
assume that you are storing data on disks. Each location on the disk is associated with a unique number;
AMOS can access that location by number when you want to read or write data. (For more information on disk
drives, see Chapter 6, "Permanent Data Storage.")

Each one of these filing cabinet equivalents may contain a great deal of data. For example, one unit of a
Phoenix disk drive may contain 15 million characters. At 2000 characters a page, one unit can store approx
imately 7,500 pages of text. You do not usually have a 7,500 page book to store. The groups of data you want to
store are generally much smaller (for example, a 25 -line BASIC program or a five- page report). Therefore, the
disk must be divisible into groups of different sizes.

AMOS structures the data on the disk by grouping it into separate sets (such as memos, reports, programs,
payroll data, etc.) called files. Files are much the same as the manila file folders in our example above. These
files in turn are grouped within other structures called accounts. As in the cabinet drawers of our example
above, accounts serve to identify the owners of files, and to help prevent users from accessing the same files
at the same time. (Remember: even though files always contain binary data, that data can represent many
different kinds of things, such as machine language programs, letters and reports, BASIC programs, etc.)

The temporary storage in your computer is called memory. Unlike the disk, when you turn off power to
memory, its contents disappear (as in the case of the very efficient janitors in our example above who clear off
your desk every night).

The advantage of temporary storage is that the computer can access the data in memory extremely quickly
much faster than it can data on the disk. Each location in memory is designated by a number (called an
address) that the computer uses to access the data in that location. The computer makes a file available to you
by copying that file into memory (leaving the original file on the disk untouched). (The computer always copies
into memory from the disk any data that it is going to be working on.) Think of memory as a temporary scratch
pad that you use and then erase. Like the desk in our example above, memory gives you a place to quickly
and easily work on files.

As you may already have guessed, the administrative assistant in our example above is AMOS itself. AMOS
loads a copy of a file from the disk into your memory area, where you can edit it (in the case of text files) or
execute it (in the case of program files). If you have changed the file, you might want to have AMOS write the
new file back out to the disk. In any case, AMOS takes care of all of the details involved in handling the file. You
don't need to know where the file is on the disk or what memory locations belong to you- AMOS handles it all
for you.

5.2 EXAMPLE OF FILE HANDLING: EDITING A TEXT FILE

Let's look at an example of how AMOS helps you to handle files. Suppose you want to update an office report.
This report exists as a text file on the disk (perhaps named REPORT.TXT).

What is a File? 5-3

The name of the file idel"'tifies it to AMOS. The characters that follow the dot at the end of the file name are
called the file's extension. The extension identifies the file type, and also helps to identify the file if two or more
file names are the same. For example, the .TXT extension tells AMOS that the file is a text file. (Any file containing
ASCII binary data that can be converted into readable characters is called a text file. The characters that
make up text include letters, numbers, spaces, tabs, carriage return symbols, and special control characters.
We've already mentioned that the data you enter is stored internally by the computer as the ASCII values of the
separate characters in their binary form. To present that data to you in a readable form, the computer translates
it back into characters.)

It's important to keep the file extension in mind. You will find using the system much easier if you realize that
the file REPORT.TXT is not the same file as REPORT.LST. While both are text files, REPORT.TXT might be a
rough, working file, while REPORT.LST might be the polished, formatted, ready-to- print version of that file.

We want to use the screen-oriented text editor, VUE, to modify our report. (A screen-oriented text editor allows
you to display the file you are editing on the CRT terminal screen. You then make changes in the file by using
commands that change the text on the screen.)

We tell AMOS that we want to use VUE to edit the file REPORT.TXT by entering:

...:..VUE REPORT.TXT [RET)

AMOS first writes a copy of the VUE program into memory (that is, it "loads" VUE into memory). (VUE is a
machine language program that exists on the disk as the file VUE.PRG.) Now VUE takes over. It looks for the
file REPORT.TXT in the disk account you are logged into. If it finds the file, it copies it into your memory area
(without touching the original on the disk). (If it doesn't find the REPORT.TXT, it asks you if you want to create a
new file of that name.)

Using the VUE commands, you now make the changes you want. It is important to realize, however, that you
are editing the copy of your file in memory- not the file itself. When you are finished, if you wish it to do so, VUE
writes the modified file in memory back out to the disk, replacing the original file. (In the case of VUE, the
original file now becomes a backup file- designated by a .BAK extension- and your newly edited file becomes
the new source file. A backup file gives you a version of the file as it existed before you made your last set of
changes.)

When you exit VUE, AMOS deletes it from memory. When you load something else into memory, AMOS writes
it over the remains of your text file in memory. (But that's OK, because your edited file has already been written
out to the disk.)

5.3 ORGANIZING FILES ON THE DISK

It is possible to have thousands of files on a single disk. This could present a difficult organization problem.
AMOS uses the concept of "accounts" to organize files on the disk, and to establish you as a legal user of the
system.

5.3.1 User Accounts

When you begin to do business with a bank, you establish an account with that bank. Your account identifies
you to the bank and allows you to gain access to the funds you deposit there. In the same way, accounts on
the AMOS system identify you to AMOS and give you a way to establish a business relationship with AMOS.

The System Operator is the person who sets up the accounts on a disk qnd assigns each user of the system
one or more accounts. AMOS maintains the account structure on the actual disk. The System Operator must

5-4 What is a File?

assign new accounts on each new disk on the system. (The System Operator is also known as the System
Manager or System Administrator. The System Operator is the person who sets up user accounts, allocates
memory, runs diagnostic tests, and performs other tasks necessary to the smooth functioning of the system.)

Each file on the disk "belongs" to one account. Each account maintains a list (called the account directorYJ
that tells AMOS what files belong to that account. Each account on the disk has a unique number associated
Nith it- the project-programmer number (also known as the PPN or account numbef)- that serves to identify
the account. As you create new files, AMOS associates them with your account, and adds their names to your
account directory. (We will talk more about the account structure on the disk in Chapter 16, "How AMOS
Handles Devices.")

Before you can use the system, you must establish yourself as a user of an account by "logging into" the
:;ystem. That is, you must tell AMOS which account you wish to work with by entering the LOG command and
Ihe project- programmer number associated with the particular account you want to access. For example:

...:..LOG DSK3:[110,4] [RET}

rhe command above tells AMOS to log you into account [110,4] which resides on the disk in device DSK3:.
For information on accounts, project-programmer numbers, and directories, see Chapter 6, "Identifying Your
:;elf to AMOS," in the AMOS Users Guide, (DWM-00100-35).)

Jnce you have logged into an account, you can begin to use the system commands and access files. Usually,
(OU will work within one account, working on files that belong to that account. Meanwhile, other users may be
Norking on the files in their accounts. Only one person should work in the same account at the same time.
~Ithough you can always copy any file from any other account into the account you are logged into, only under
:;pecial circumstances can you copy a file into someone else's account. The account structure on the disk
lelps both you and AMOS to keep straight which users may access files on that disk, and what files those
Jsers can access. The System Operator may log into a special account, called the System Operators account
DSKO:[1 ,2]), which gives the System Operator special system privileges.

).3.2 Passwords

Jften the System Operator will assign a password to an account. This keeps unauthorized users from accessing
:hat account. If a password is required before you can log into an account, AMOS asks you for it. For example:

...:..LOG HWK1 :[34,1] [RET}

Password:

n this case, you must enter the correct password before AMOS logs you into the account. A password is only
)f value if it is secret; therefore, AMOS does not display your password as you enter it.

).4 HOW AMOS ALLOCATES FILES ON THE DISK

Ne'li talk in much more detail about the structure of the disk in Chapter 16, "How AMOS Handles Devices."
However, there is one concept that we ought to discuss here before you actually begin to use files.

rhroughout the Alpha Micro documentation, you frequently see the terms sequential files and random files.
You may also see these mentioned as linked files and contiguous files.) Because the kinds of actions you can
)9riorm on files depend on whether those files are sequential or random, you'll want to understand the difference
::>etween the two.

What is a File? 5-5

AMOS transfers files to and from the disk in units of 512 bytes. This 512 - byte chunk is called a disk block. Ever
the smallest file consists of at least one disk block (though the block might be partially empty). The upper limi
on the size of a file depends on the size of your storage devices. (That is, a file may not overlap onto tW(
different disks, but must fit all on one unit.) Each disk block has a unique number by which AMOS car
reference it.

AMOS has two different ways of writing files to the disk. The way that a file is allocated on the disk determinel
whether it is a sequential or a random file.

5.4.1 Sequential Files

Most files on the AMOS system are sequential files. We call these files sequential files because AMOS accessel
the data in the file sequentially. That is, as AMOS reads each disk block of the file, that block tells it the disl
address of the next disk block. AMOS proceeds through the file one block at a time. To find out where blocl
#3 of the file is, AMOS looks at block #1, which points to block #2. Then AMOS looks at block #2, whict
points to block #3. The important thing to remember about a sequential file is that to acess one block of date
in it, you have to access all preceding blocks.

When AMOS writes a sequential file to the disk, it looks for the first free disk block. It writes a copy of the first filE
block into that disk location. Next, it looks for another free disk block. This next disk block mayor may not bE
anywhere near the first disk block used. This process goes on until the entire file is transferred to the disk. ThE
disk blocks that make up the file may be scattered across the disk. How does AMOS keep track of the file?
Each disk block in the file contains a portion of the file; it also contains the address of the next disk block usee
by the file.

Address of Next
Disk Block in File

DATA IN FILE BLOCK

FigureS·1
Sequential File Disk Block

Sequential files are also called linked files because the disk blocks are linked together by the information Irl
each block that points to the address of the next disk block. (The last block in the file is designated as such by
a link of zero.) For example: '

I I r.
Address of

DATA ---. Address of
DATA ... End of File

DATA Next Disk Block Next Disk Block ... (Zero Link)

File Block #1 File Block #2 File Block #3

FigureS·2
Disk Blocks In a Sequential File

5-6 What is a File?

The major advantage of a sequential file is that you can expand it. For example, suppose you are editing a text
file that is four disk blocks long. AMOS is easily able to make the file larger by simply allocating a new disk
block for the new material you want to add. It is for this reason that processes which expand files (such as text
editing) can only be performed on a sequential file. If you try to use VUE on a random file, you see the error
message:

? File type mismatch

Almost any time you create a file by using a command from AMOS command level (for example, using the
MAKE or VUE commands), that file is a sequential file.

5.4.2 Random Files

Some files are called random files because AMOS can access the data in them "randomly." AMOS knows
how long the files are, and also knows exactly where the files begin on the disk. AMOS can therefore access
any block in a file by computing an offset value from the front of the file, and then reading the proper disk
location. We say that the data access is random rather than sequential, because AMOS can access the disk
blocks in any order, and does not have to step through the file to find the disk location of a specific block.
AMOS can therefore find data in such a file quickly and efficiently.

When AMOS writes a random file to the disk, it looks for the first free group of contiguous disk blocks that is
large enough to hold the entire file. That is, if your random file is 20 blocks long, AMOS looks for 20 disk
blocks that physically adjoin on the disk. When it finds such a group of blocks, AMOS writes the file to the disk.
If it cannot find a group of blocks large enough, you see a Disk full error message. This illustrates a major
disadvantage of a random file. Even if you have 100 free disk blocks, you will not have room for a 20-block
random file if 20 of those blocks are not in a contiguous group on the disk.

Because this kind of file is written into contiguous disk blocks, we also call it a contiguous file.

File Block #1 File Block #2 File Block #3 File Block #4

FigureS·3
Disk Blocks In a Random File

Once a random file is allocated on the disk, it is not possible to expand it. Therefore, random files are used for
applications where the file length remains constant (e.g., BASIC data files).

CHAPTERE
PERMANENT DATA STORAGE

The two major devices for permanently storing data are the disk drive and the magnetic tape unit. Magnetic
tape units are not as widely used as disk drives because they are relatively expensive and cannot be used a!
the primary permanent storage device. Therefore, we will center our discussions on disk drives. For mon
information on how data is structured on the disk, see Chapter 16, "How AMOS Handles Devices."

6.1 DISK DRIVES

All of the software that runs on the system exists as files on a disk. The special disk that contains the files tha
comprise AMOS and the various system commands is called the System Disk. Because the process c
system startup involves reading certain files off the System Disk, we say that the system "boots off of" (that is
starts up from) the System Disk.

The System Disk is always known by the device specification "DSKO:". (For example, if the disk file CREATE.PRC
appears in account [1 A] on the System Disk, its full file specification looks like this: DSKO:CREATE.PRG[1 A].

The disk drive is the physical device that reads and writes data on the recording media (the disks). The disl
drive that contains the System Disk is called the System Device.

Disk drives come in two basic types: those that use "floppy" disks and those that handle hard disks.

A floppy disk is a very thin, flexible, circular piece of mylar plastic on which data can be recorded. A permanen
cardboard envelope encloses the disk, which rotates within the envelope. The floppy disk drive reads the date
on the disk through the cutouts in the cardboard envelope. (The cardboard envelope is an integral part of thE
floppy disk; do not remove it.) Although a floppy disk does not hold as much data as a hard disk, it is easil~
stored and very portable.

A hard disk drive contains at least one rigid circle of metal coated with iron oxide. (Each one of these units i~
called a platter or a surface.) Platters are either "fixed" or "removable." A fixed platter cannot be removed fron
the disk drive; a removable platter can be removed and replaced with another removable platter. Dependin~
on the disk drive, all of the platters may be fixed, or some may be fixed and some may be removable. RemovablE
surfaces are enclosed in a protective plastic case; this disk together with its case is called a disk pack or e
disk cartridge, and you may easily change one disk pack for another.

A typical example of a hard disk configuration is the Hawk hard disk drive which is available from Alpha Micra
When we talk about the Hawk drive, you may hear the phrase "one fixed and one removable." What thil
means is that one platter (containing five mega-bytes of data storage) is fixed in the bottom portion of the disl
drive. Another platter (also containing five mega-bytes of data) is contained in a removable disk pack tha
loads into the top of the disk drive. Other hard disk drives may contain several fixed platters and one disk pack

NOTE: Let's digress for a moment to talk about an issue that often confuses beginning AMOS users: that is
the fact that the cartridge is sometimes known by different disk specifications. (For example, on a Hawk disk
the cartridge is sometimes DSKO:, and other times it is DSK1 :.)

6-2 Permanent Data Storage

Because the system must boot off DSKO:, the System Disk must always be known as DSKO:. On
hard disk systems, the System Disk usually resides on the first fixed platter of the System Device.
During normal operation, then, the system boots off the fixed platter System Disk; the first fixed
platter is thus DSKO: and the cartridge is identified by some other specification. However, when
your system is new, there is no System Disk on the fixed platter; in such cases, your system must be
able to boot off of the cartridge so that you can transfer the system software from the cartridge to the
fixed platter. At system startup, AMOS therefore checks to see if the cartridge is a System Disk; if it
is, the system boots off the cartridge System Disk instead of the fixed platter (which mayor may not
contain a System Disk) and the cartridge is then known as DSKO: (since it is the disk the system
started up from) and the fixed platter is known by some other device specification. (You can tell
whether the system booted off the cartridge or the fixed platter by using the SYSTEM command;
see the SYSTEM reference sheet in the AMOS System Commands Reference Manual, (DWM-001 00-
49).)

Hard disk drives are much faster at accessing data than are floppy drives, and can generally store a great deal
more data. However, hard disks are much more expensive than floppy drives, and require that you handle
them more gently.

Alpha Micro is constantly expanding the number of different types of disk drives you can use on your system.
At the present time, your choice of disk drives ranges from disk drives using floppy disks that store about 250
thousand bytes up to hard disk drives that store 300 million bytes!

6.1.1 DiskStructure

Although we won't be going into much detail here, you might be interested in how disks are structured to hold
data. Let's look at a single hard disk platter or a single floppy disk. The disk surface is organized into concentric
rings called tracks. The disk is further divided into pie-shaped wedges. The area on a track between the
beginning and end of a "wedge" is called a sector. Imagine a pie decorated with a "bulls-eye" target, which
is then cut into wedges; the area within a wedge on a specific circle is a sector. The amount of data that is
written into each sector varies, depending on the particular kind of disk. Except in very special circumstances,
AMOS always writes data out in chunks of 512 bytes; usually the sector size on a hard disk is also 512 bytes.

Only under unusual circumstances will you ever have to worry about disk structure or sector size. AMOS takes
care of communicating with the disk for you.

6.2 MAGNETIC TAPE TRANSPORTS

The unit that reads and writes magnetic tapes is called a tape transport. This device works much like the
home open- reel tape recorder you are familiar with. You can transfer disk files to tape or vice versa. Unlike disk
drives, magnetic tape transports are never used as primary permanent storage devices. (You'll remember that
AMOS itself is a set of files that exist on a special disk called the System Disk. Therefore, the primary permanent
storage device on the system- the System Device- must always be a disk drive.) Magnetic tape may be used
to back up data or (the most likely use) as a means of transferring files between different computer systems,
but not as the System Device.

The main disadvantage of the magnetic tape unit (and another reason why it cannot be used as the System
Device) is that it is not a random-access device. That is, you cannot access blocks of data on the tape except
in the order in which they were written. Also, you can't rewrite data in the middle of the tape without losing all
information past it on the tape. Nevertheless, it is a valuable tool for transferrir'lg data between computer
systems.

CHAPTER 7
PROGRAMS

In the previous chapters of this section we mentioned that the special instructions which tell the computer
exactly what to do are called the program. An audience is guided through a complex opera by a small, printed
program that describes the chain of events which give meaning and continuity to the songs they hear. Similarly,
a computer is guided through an event of data handling by the specially written program you enter or invoke
from storage. The program describes to the computer the chain of steps it must perform to do a task. The brief
summary of the action as written in the opera program helps the audience to follow and understand the
opera's storyline. As a result the audience responds to the dramatic acting and singing with emotion at the
right moments. The audience then signifies its appreciation to the creators of the opera by its applause as the
event is completed. Likewise, the computer steps through your program, responding to the data presented it
according to the steps you have put in the program, and at the end the computer returns to you a completed
task.

A program is a set of steps that tell the computer exactly how to handle a complete task. Most programs
include alternate steps to take care of variations. The result of processing a program is the automatic solution
of a problem or the completion of a task based on the data you provide.

The concept of a program is not unfamiliar to you. You program all the time. Whenever you plan a set of steps,
test conditions, and think of alternate steps, you are programming. For example:

Program to Enter the Swimming Pool

1. Change your clothes to your swimsuit.

2. Walk to the pool carefully so as not to slip.

3. Does the pool have clean water? If not, stop the program. If so, go on.

4. Test the water with a toe.

5. Is the water too cold? If so, wait awhile and then test it again. If not, go on.

6. Take a deep breath and hold it.

7. Leap into the pool.

7.1 THE DIFFERENCE BETWEEN DATA AND THE PROGRAM

Essential to understanding the concept of a program is the awareness that the program is different than the
data that is manipulated by the program. They are both represented the same way within the computer- in
machine language. They are both originally presented to the computer in the same ways (for instance, via the
CRT terminal and ASCII code). However, the program is the method whereby you cause the computer to step
through a process, going in the direction which is useful to you. The data is the raw material you present to the
computer, which the computer draws upon as it proceeds to do its task. Data can be changed while it is being
processed, so in order to use the same program on different or changing data, the program must be able to

7-2 Programs

handle variables. A variable is a symbol that can represent data. However, the same variable can stand for a
variety of data. For instance, in the above example of a program, you might let trunks replace the variable we
have named swimsuit. Or you might substitute in bikini. (Or frogman suit, lead overcoat or birthday suit.) The
variable allows you (and the program) to change the data the program works on. If a program does not contain
variables, it can only work on one set of unchanging data.

At some pOint, the program is broken down into machine language for direct processing. You can program
the computer using a number of different languages, depending on what your computer can handle. These
languages are designed to allow you to put a program into the computer in a way that is convenient and
logical to you. Most computers also allow you to enter a program in the actual machine language, using 1 s
and Os or binary shorthand methods. The advantage to machine language programming is a vast increase in
processing speed, since the computer does not have to interpret some other language first. The major dis
advantage to machine language programming is the difficulty and tedium of entering each and every minor
detail of instruction. The higher-level languages take care of most of these details for you. Some of the higher
level languages are discussed in Chapter 10 of this book.

7.2 STEPPING THROUGH A PROGRAM

The fact that most CPUs are so rapid makes it appear sometimes as if a great deal of data handling is
occurring all at once. Yet, in a given cycle only one minute step of data processing is done. Many steps are
required to do any significant computing, and in order for the computer to do what you want, you have to give it
the steps you want it to go through. A machine language program details every single step. Programs in a
higher-level language are translated into machine language instructions for you. Nevertheless, any program
you use has to be set up to carry the computer step by step through a task.

When a program is created, the separate steps are determined by the programmer in as much detail as the
language being used requires. A model of the program steps is called a flowchar~ or flow diagram. Even
when a programmer can create a whole program mentally, he or she must nevertheless decide how the
logical flow of the program should go. A programmer must consider how data is entered, how it may vary, how
the variables can all be contained in the program, what the program must do with or to the data, and where the
result of the data handling must go when the program is complete.

A programmer is limited by the machine as well. Recall that when the CPU is going through a program, the
program must be in very fast temporary storage, which is completely accessible to the CPU. This temporary
storage is in every case limited somehow in size. This is a limit in the hardware, and one that the programmer
must work around if possible by eliminating unnecessary steps and making the necessary steps efficient.
Occasionally, time is a limit. If the programmer makes a step depend on a previous step, but has not allowed
for the machine to take the required cycles it must have (each cycle taking a little time), the program doesn't
work properly.

Flowcharting a program reveals how the program should work. Whether mentally conceiving or actually writing
down a model of your program, you as a programmer must arrange your program in logical steps the computer
can follow and perform. Below we give a lengthy example of a kind of flow diagram, more expansive than the
swimming pool example above, and considerably more detailed. We bring in data and consider variables to
show how a task is logically stepped through. It is not a program. It is a list of steps designed to illustrate how
variables are anticipated and how the computer follows instructions precisely. For the sake of clarity, there is a
standard set of symbols normally used when flowcharting. If you are curious or find it necessary to learn the
standard symbols, please refer to a textbook on programming or flowcharting. There are literally hundreds of
such books available today.

In our example, as we set about to list some logical steps from which a program could eventually be generated,
we know that certain real objects exist and are available to us. We construct the flowchart to help us define
how to handle all the variables which are possible regarding those steps, and to get us successfully through

Command Processing 13-5

13.3 CHARACTERISTICS OF PROGRAMS ON THE AMOS SYSTEM

Remember that all commands invoke command files or machine language programs. Let's talk a minute
about the programs that make up the command routines. All command files and machine language program~
originally exist on the disk as files. Most command routines are transient, that is, they exist on the disk, are
loaded into main memory only when needed, and then are automatically deleted from memory when executior
is finished. Such command routines can be made non-transient by loading them into memory with the LOAC
command. I n that case, they remain in memory until explicitly deleted by a user.

All programs on the AMOS system are relocatable, That is, they will operate properly anywhere in memory
without being modified or reassembled. This is necessary because there is no way of knowing beforehanc
which memory locations a program will have to be loaded into, since all users on the system use a differen
area of memory. AMOS automatically takes care of making higher-level language programs and commanc
files relocatable for you.

Some machine language programs are also re-entrant. A re-entrant program is one that can be used by more
than one user at one time. For example, BASIC can be invoked by one user, interrupted by another user whc
also makes full use of the program, and then re-entered at the point of interruption by the first user. Both users
get correct results. Re-entrant programs are also known as sharable programs.

So that a re-entrant program can be used by more than one person, it must be loaded into sharable memor)
(the area of memory used by the operating system and resident system programs). The System Operator car
add programs to the Resident Program Area by modifying the system initialization command file. The obvious
advantage to sharing programs is that each individual user does not have to load the program into his or hel
own area of memory, but can access the single copy of the program in sharable memory. The disadvantage tc
loading re-entrant programs into sharable memory is that this expands the size of this area of memory, anc
reduces the amount of memory available for individual users. If the System Operator loads a program into the
Resident Program Area, that program MUST be re-entrant; the computer will exhibit strange and distressin~
behavior if several users are sharing, at the same time, a program that is not re-entrant. If you want to write re
entrant programs, consult the AMOS Assembly Language Programmer's Reference Manual, (OWM-00100-
43), for hints on doing so. .

CHAPTER 14
MEMORY CONTROL AND MANAGEMENT

When you see the term "memory" in this book, we are talking about the random-access memory that makes
up the temporary data storage on your computer system. (Remember that we discussed temporary storage
devices, permanent storage devices, and random-access memory in Chapter 2, "What is a Computer?".)
Although previous chapters have mentioned the importance of memory as a component of your computer
system, this chapter will go into some detail on how AMOS manages, controls, and allocates memory.

Before any program can be executed or data manipulated, the computer must transfer a copy of that program
or data from a permanent data storage device (that is, the disk) into memory, where the CPU can work on it.
(When we transfer a copy of a file from the disk into memory, we say that we have loaded that file into memory.)

Memory is the only form of storage that the CPU can work on directly. It differs from disk storage in that the
computer system can access it extremely quickly(in billionths of a second), and because memory offers only
temporary storage; when the power goes off, the contents of random-access memory disappear. Because of
these unique attributes, the computer uses memory as a work area- a scratch pad, in other words.

Each location in memory is consecutively numbered; that number forms a unique address by which a job or
the operating system can access a specific memory location. Memory addresses can run from 0 to 65535 on
the Alpha Micro computer system. This is because the CPU handles 16-bit numbers; the maximum number
you can represent in 16 bits is 65535. (NOTE: Although this would seem to limit us to a maximum of 64K
memory on a system (locations 0-65535), the AMOS system uses a memory management technique that
allows us to have multiple sets of 64K memory. See Section 14.3, "Memory Management," for a discussion of
this technique.) Memory locations near location 0 are known as low memory; locations near the other end of
memory are known as high memory.

When the operating system loads a copy of a program into memory, it does so by consecutively writing one
byte of data per memory location. The Memory Controller keeps track of which locations are available for use.
It also keeps track of the areas of memory used by specific jobs, and allocates memory for different uses.
Although these functions are important under any circumstances, they become even more significant on a
timesharing system, where different users are operating in different areas of memory at the same time. If some
entity were not managing memory resources, it would be impossible to keep the operating system and jobs
from bumping into each other throughout memory, writing over each other's data and programs. Because the
AMOS computer does not have memory mapping or memory protection built into the hardware, software must
keep track of what areas are in use, and what areas are available.

14.1 MEMORY MAP

The pattern in which memory is distributed to the various jobs on the system and to the operating system itself,
is often known as the memory map of that computer system. The memory map of your system changes every
time you change memory allocations.

When the system starts up, AMOS writes itself into memory, beginning with location O. The amount of memory
taken up by AMOS depends on your particular system and the particular devices connected to that system.

14-2 Memory Control and Management

The remaining memory is available for user jobs except for the top 256 bytes of memory, which are used as
the I/O ports. (You can see, then, that our earlier assertion that memory addresses can run from 0 to 65535 is
not strictly true. Because the top 256 bytes are the I/O ports, memory addresses really run from 0 to 65279.)

14.1.1 Memory Partitions

Each job has its own area of memory, called a memory partition or user partition. The memory partition
allocated to a specific job may be anywhere in memory, depending on what memory was available when that
partition was assigned. A typical memory map for a 64K system might look something like this:

(Location 0) (Location 65279)

First 16K 16K 16K 12K 4K

Resident Line

AMOS Program JOB#1 JOB#2 JOB#3 Printer

Area Spooler
Job

Sharable Memory User Memory

Figure 14·1
l)'pical Memory Map for a 64K system

The diagram above shows a system that uses the first 16 K for the operating system and for resident programs.
This 16 K is called sharable or system memory, because all users on the system can access it. All users can
access programs that are in the Resident Program Area without loading those programs into their own mem
ory partitions. In addition, besides saving room in individual user partitions, putting programs in the Resident
Program Area allows users to access those programs faster. This is because the programs do not have to be
loaded into memory before they are used. Placing programs into the Resident Program Area is therefore a
good idea if you have the room in sharable memory to do so, and if those programs are used frequently by
most of the users on the system. (Placing a program into the Resident Program Area is done by the System
Operator, who does so by modifying the system initialization command file.) NOTE: Any program loaded into
the Resident Program Area MUST be re-entrant. (See our discussion of re-entrant programs in Section 13.4,
"Characteristics of Programs on the AMOS System.")

The rest of the memory, called user memory, is nonsharable memory, and is devoted to user jobs. Our sample
system has divided up the remaining memory into user partitions of 16K, 16K, 12K, and 4K.

The total amount of memory used in our sample system adds up to 64 K (minus 256 bytes at the top of
memory, which are used as the I/O ports and cannot be allocated to user partitions). Note that memory
locations range from 0 to 65279. Each partition must contain contiguous memory locations. For example, all
the memory locations that appear in JOB #1 's memory partition must be consecutively numbered, with no
gaps in those numbers.

Notice that the last 4K partition is set aside for a special job that is used by the line printer spooler program.
The line printer spooler is a special program that allows your job to perform two tasks at once: printing a file
while you are running a program in your partition. (The use of the spooler program is an example of multi
tasking; or, one user performing two or more tasks at the same time). What actually happens is that your job
communicates with the line printer spooler job. Then the line printer spooler program allows you to place the

Programs 7-3

the task. We represen+ the real objects with symbols. In the flowchart, those symbols are words. In the
program, those symbols (which are data) may be numbers, letters or other ASCII symbols. Were we to create a
program using the flowchart as a model of the logical flow, and run that program, the computer would
manipulate the symbols to simulate the manipulation of the actual objects. Even the final product of the
manipulation would be simulated.

The rules of following a flowchart are that each step is an instruction, a decision or an action. As you consider
the flow, you must imagine yourself as the computer, having the single purpose of exactly following and
performing the steps. Some of the steps give you no choice but to follow them to another step. Other steps
make you look in your memory and decide the current status of a certain variable, then take the appropriate
path directed. (Sometimes the status of the variable is determined by the sensory inputs from the peripheral
equipment in your system.) Some steps make you perform actions using the outputs of your peripheral
equipment. If you are not forced, directly or following a decision, to a step out of numerical sequence, or when
no direction is provided in the step at all, you must go to the next step in sequence automatically. The final rule
to observe, when following a flowchart, is that if you come across an undefined variable, and do not meet the
condition of the step, you must fall through the step to the next step in sequence.

In our example, the real objects we know to exist and be available to us are represented by the word- symbols
"peanut butter," "jelly," "bread," "knife," and so forth. On our system, we have hands, ears and a mouth, can
travel, make measurements and observe. The final result, after we have proceeded through the entire flowchart,
should be a peanut butter sandwich:

1. START THE PROGRAM

2. GO TO A STORE

3. IS THE STORE A GROCERY STORE?

NO

GO TO ANOTHER AND DIFFERENT STORE:
GO TO STEP3

4. GO IN THE STORE

5. GO TO A DEPARTMENT

YES

GOTOSTEP4

6. LETTHE TERM "GROCERY-NAME" TEMPORARILY MEAN "PEANUT BUlTER": LETTHE
TERM "CONTAINER-NAME" TEMPORARILY MEAN "JAR": LET THE TERM "VARIETY
NAME" TEMPORARILY MEAN "CRUNCHY': GO TO STEP 9

7. LET THE TERM "GROCERY-NAME" TEMPORARILY MEAN "JELLY': LET THE TERM
"VARIETY-NAME" TEMPORARILY MEAN "GRAPE": GOTO STEP 9

8. LET THE TERM "GROCERY-NAME" TEMPORARILY MEAN "BREAD": LET THE TERM
"CONTAINER-NAME" TEMPORARILY MEAN "LOAP' : LETTHE TERM VARIETY-NAME"
TEMPORARILY MEAN "WHITE"

9. DOES THE DEPARTMENT EQUAL THE GROCERY-NAME DEPARTMENT?

NO
GO TO ANOTHER AND DIFFERENT
DEPARTMENT: GO TO STEP9
.

10. TOUCH A CONTAINER-NAME OF GROCERY-NAME

YES
GO TO STEP 10

7-4

11. IS IT VARIETY-NAME GROCERY-NAME?

NO
RELEASE CONTAINER-NAME:
TOUCH ANOTHER AND DIFFERENT
CONTAINER-NAME OF GROCERY-NAME:
GO TO STEP11

12. GRASP THE CONTAINER-NAME OF GROCERY-NAME

Programs

YES
GO TO STEP 12

13. IF 1 JAR IN GRASP GO TO STEP 7: IF 2 JARS IN GRASP GO TO STEP 8 : IF2 JARS AND 1
LOAF IN GRASP GO TO STEP 14

14. LEAVE THE STORE WITH CRUNCHY PEANUT BUTTER JAR AND GRAPE JELLY JAR AND
WHITE BREAD LOAF IN GRASP

15. RETURN TO HOME

16. OPEN 1 JAR: WH EN 2 JARS OPEN GO TO STEP 18

17. GO TO STEP 16

18. OPEN A DRAWER

19. IF DRAWER IS EMPTY GO TO STEP 22: GRASP A UTENSIL

20. IS IT A KNIFE?

NO YES

GO TO STEP 21 GO TO STEP 23

21. DROP A UTENSIL: GO TO STEP 19

22. OPEN ANOTHER AND DIFFERENT DRAWER: GO TO STEP 19

23. OPEN LOAF: GRASP BREAD: STORE BREAD ON COUNTER: LET BREAD BE DIVIDED
INTO HALF-BREAD AND OTHER-HALF-BREAD

24. LOAD KNIFE WITH PEANUT BUTTER

25. STORE PEANUT BUTTER ON HALF-BREAD

26. LOAD KNIFE WITH JELLY

27. STORE JELLY ON OTHER-HALF-BREAD

28. LET SANDWICH BE HALF-BREAD + OTHER-HALF-BREAD

29. DROP KNIFE: GRASP SANDWICH

30. STORE SANDWICH IN MOUTH

31. STOP THE PROGRAM

Programs 7-5

When you followed the steps, you mentally or symbolically constructed a final product and stored it. YOL
handled all the procedures a step at a time, even though the steps often made you jump back and forth in the
flowchart or go around in loops a number of times. The way you kept straight the manipulation of differen!
kinds of symbols while going through the same procedure was by using variables, such as "GROCERY.
NAME" and "UTENSIL." You exchanged variables, performed mathematical functions with them and
comparing them, acted on the result of the comparison.

You followed steps which described actions. Load, drop, and grasp in the example might be equivalent to the
functions of Load (data), Erase, or Store, as performed by a computer in an actual program. Your external
actions like "go," "run," and observations may be equivalent to a computer drawing on its peripheral devices
to process, pri nt or read data.

Above all, and the point of any flowchart from which a real program is to be developed, the steps were sc
organized that they could be manipulated by your mind in a logical way. You proceeded through the steps 01
the flowchart and automatically imagined or simulated the completion of your task. If a program were to be
written based on the sequence of steps listed in the flowchart, and entered into the computer in the proper
language, the computer would do the same thing.

7.3 ALPHA MICRO PROGRAMS

Please remember that AMOS, the Alpha Micro Operating System, is made up of a large number of individual
programs, each designed efficiently and logically to handle a specific kind of task for you. It is important to
reiterate here that as either a programmer or a user, you have many high- powered programs already available,
and can always add command programs you write or which come from Alpha Micro.

7.4 THINGS TO COME

Now that you know a little bit about AMOS and about computer systems in general, it's time to talk about your
system in particular.

The next few chapters of the manual are going to introduce you to some of the major programs that run on the
AMOS system. We'll talk about the Alpha Micro language processor programs, text editing programs, and
system utilities. For detailed information on these subjects, you will want to turn to the appropriate manuals.
(See Appendix B, "Where Do I Go From Here?" for a short guide to the Alpha Micro software documentation
library.)

PART II

PROGRAMS AVAILABLE ON THE AMOS SYSTEM

Now that you are familiar with some general computer concepts, you are probably interested in learning morl
about the AMOS system. The next three chapters introduce you to some of the major programs that run unde
the Alpha Micro Operating System.

We won't even try to introduce you to all of the programs that run on the AMOS system, but you will becom
acquainted with a few programs that represent the major types of system software available. (By "system
software," we mean those machine language programs supplied by Alpha Micro on the System Disk. Therl
are over 120 system programs available. See the AMOS System Commands Reference Manual, (DWM-001 00
49), for information on these programs.)

The programs we are going to talk about in Part II can be classified into three categories: utility programs, te)
processors, and language processors. In no case do we go into details on program operation. Rather, OL
purpose is to let you know that these kinds of programs exist, and to tell ~u where ~u can find more informatiOi
about the programs.

CHAPTERS
AMOS UTILITY PROGRAMS

This chapter introduces you to four major utility programs: HELP, SORT, DIR, and ISAM. We've chosen to
discuss these very different kinds of programs because they are characteristic of the programs available to
you. These programs do not have much in common with one another except for the fact that you can use them
all at AMOS command level. Their applications range from simple "housekeeping" functions to sophisticated
file processing. These "utility programs" provide general file or system services, and add to the flexibility and
efficiency of your system. If you would like a complete list of all of the programs available for use at the AMOS
command level, refer to Section 6.3, "Functional Summary of Commands," in the AMOS System Commands
Reference Manual, (DWM-00100-49).

8.1 HELP

It is sometimes difficult for a new user on a complex, sophisticated system to become familiar with the multi
plicityof commands and options available. The purpose of the HELP program is to aid the new user of the
system by providing information on using the system and its commands. HELP displays text files that contain
information on specific topics. To use HELP, enter the word "HELP" at AMOS command level. HELP then
displays a list of the topics it can give you information about. For example:

.HELP [RET)

Now the screen clears and you see something like this:

Help is available for the following:

APPEND BASIC COpy DATE DIR
MOUNT PASS PRINT RENAME SET

ERASE LOG
TYPE VUE

ME

This list of topics tells you which text files the HELP program can show you. (The list of topics may vary
depending on your system.) To see a particular HELP file, enter HELP followed by the topic you want information
about; then type a RETURN.

Although the HELP program was primarily conceived as a way of giving you information about the system, you
can also use the HELP program to provide your own information to other users. For example, if you use an
accounts receivable program on your system, you might want to provide a HELP file that gives instructions for
data entry.

The HELP program displays any text file in the proper account that has the extension .HLP. You can create your
own HELP file using one of the system text editors. Depending on which account you place that HELP file into,
you can make it accessible to: a} all users of the system; b} only the users that use the accounts in your own
project; or c} only the users who log into a specific account.

For more information on HELP, see the HELP reference sheet in the AMOS System Commands Reference
Manual, (DWM-00100-49).

8-2 AMOS Utility Programs

8.2 DIR

You will often use the 01 R program to find out what files are in your account. (That is, you will use 01 R to look at
your account "directory.")

OIR is capable of performing a great many other functions as well. Among other things, OIR can:

• Display a list of all of the files in any account or any group of accounts.

• Display a list of only specific files in one or more accounts. (As one example, OIR could list all
files with the .TXT extension, all files whose names begin with the characters AR, and all files
whose names end with the characters PRNT.)

• Search all accounts on a particular disk for a particular file or set of files, and tell you what
accounts contain the files you are looking for.

• Search all mounted devices on the system for a particular file or set of files, and tell you which
devices and accounts contain the files you are looking for.

• Display a list of the memory modules in memory.

• Send one or more directory displays to a printer or to a disk file.

• Format the directory display into a specified number of columns.

01 R usually gives you the following information on each account directory it displays: the account number, the
names and extensions of the files, and the number of disk blocks taken up by each file. At the end of the
directory display, 01 R tells you how many files it listed and the total number of disk blocks used by those files.

You can instruct OIR to give you even more information about each file:

• The beginning disk address of the file.

• Whether the file is a random or a sequential file.

• A complete file specification for each file (Le., disk and account specification as well as filename
and extension).

• A hash total for each file. (A hash total or hash mark is a computed value based on character
istics of the file.) A file's hash total uniquely identifies that file. Two files will only have the same
hash total if their contents are identical.

For more information on OIR, see Chapter 9, "The Wildcard File Commands," of the AMOS User's Guide,
(OWM-00100-35), and the OIR reference sheet in the AMOS System Commands Reference Manual, (OWM-
00100-49).

8.3 SORT

SORT alphabetically and numerically sorts data in a sequential file. There are many occasions when you
would like to see the data in your file in a different order than the one in which you originally entered the data.

For example, suppose you have a data file that contains entries for customers. Each entry contains the following
information: customer name, phone number, company name, address, and 1.0. number. You may want a list oj
a_" of these customers with the company names in alphabetical order. Another day you may want the customel

AMOS Utility Programs 8-3

list ordered by customer name or 1.0. number. SORT sorts the file for you and allows you to choose which item
(called a keY, in the entry you want to sort by. You may sort in ascending or descending order.

Each entry (called a logical record) must contain the same number of characters. (Remember to count spaces
and punctuation, as well as letters and numbers!) Each record must be arranged so that each particular key is
the same length as the same key in the rest of the records. (For example, if the customer name in the first
record is fifteen characters long, the customer name key in all of the records must be fifteen characters long.)
All keys must appear in the same order in each record. An example might help clarify matters a bit. Assume
that each record has the following information:

NAME:COMPANY NAME:PHONE NUMBER:ADDRESS:I.D. NUMBER

Let's assume that we have decided how large each key must be:

NAME (15 characters):COMPANY NAME(15):PHONENUMBER(11):ADDRESS(20):ID#(8)

Each logical record is 15+15+11 +20+8 characters, or 69. When we create the record, we must make sure
that each key is equal to the size we have set aside for it. (For example, if the name we are entering is only 10
characters long, we must add 5 spaces- or other characters- to make it 15.)

Several records might look something like this:

Richards, J.R.]Racket CLub]]]]7145551212]123 Wicker,SanLeo,CA00002367
GreeLy, Horace]GeneraL Photon]5052315678]45 1st,Cedar City,UT00003456
Smyth, L.D.]]]]Acme SheepDip]]6721875645]12 Main,ELy NE]]]]]]00001200

Each logical record ends with a carriage return/line-feed character pair. When you use SORT, you tell it how
long each logical record is (excluding the carriage return and line-feed characters at the end of each record).
Then you tell it where each key begins in the record, and how long the key is.

Besides being able to sort by anyone key in the logical record, SORT is also able to perform a hierarchial sort
(a sort that also performs sub-sorts). One example of a hierarchial sort is the telephone book, which contains
thousands of entries sorted by last name. Each group of entries with the same last name is then ordered by
first name.

Let's look at a situation where you might want to perform a hierarchial sort. Suppose that you have a data file
that contains information on forty of your salespeople. Each record contains: salesperson's name; region
salesperson handles; number of sales to date; and, amount of commission earned to date.

You can, of course, sort your data file by anyone of these items. But, you might want to arrange your data in a
more sophisticated way. For example, you might want a list of your salespeople grouped by the regions they
handle. Then, for each region, you might want to have the salespeople grouped by number of sales made this
year. You might want each group of salespeople who made the same number of sales ordered by amounts of
commission earned this year.

To perform this kind of sort, you specify three keys to SORT: region, number of sales, and amounts of commis
sion. SORT performs only one sort, but your final listing might look something like this:

8-4 AMOS Utility Programs

Smith, Edna North East 023 sales $2400
Arriza, J.R. North East 023 sales $1245
Calliano, John North East 015 sales $0932
Triatte, Susan North East 007 sales $0120
Williams, Loren North East 007 sales $0085
Wong, Henry North West 051 sales $3400
a Brien, Jean North West 051 sales $1300
Ellison, Frank South East 102 sales $5076
Soto, Robin South East 102 sales $4600
Perlman, Andy South East 034 sales $1063

You may perform each sub-sort in ascending or descending order. For information on using SORT, refer to
Chapter 10, "More File Commands," in the AMOS User's Guide,(DWM-00100-35), and the SORT reference
sheet in the AMOS System Commands Reference Manual, (DWM-00100-49).

NOTE: SORT sorts data based on the ASCII values of the characters in the keys. That means that upper case
letters come before lower case letters, and numbers come before letters.

8.4 THE ISAM SYSTEM

Many business applications programs create and maintain huge data files. Of major concern to the program
mer is the task of accessing specific data in these files quickly and efficiently.

The ISAM system gives you a way to organize and use large data files. It also provides a standardized way to
quickly retrieve and replace data in such files.

This section simply introduces you to the ISAM programming system. For information on using the ISAM
system and the programs you can use to create and maintain ISAM files (ISMBLD, ISMCOM, ISMDMP, and
ISMFIX), refer to the ISAM System User's Guide, (DWM-00100-06), and the AlphaBASIC User's Manual,
(DWM-00100-01).

8.4.1 What is ISAM?

ISAM is Simply a method for organizing and maintaining large data bases. The name stands for Indexed
Sequential Access Method, and refers to the manner in which data is organized for later retrieval.

The information in an ISAM data file is accessed by searching a separate index file that contains a group of
keys. The index file also contains pointers to the logical records in the data file that those keys are associated
with. (Remember that we defined "keys" and "logical records" in the discussion above on SORT.)

To clarify this concept, let's look at an example where you automatically organize data much as ISAM would:

When you need to find the meaning of a word in the dictionary, you don't start with the first page of
the dictionary and scan every entry until you find the word you want. That would be a formidable
task. Instead, you look at the tops of the pages to see which words are the first and last on that page.
These words give you an "index" into the page. If the word you want falls somewhere between those
two words, you decide which column of the page the word may fall into, and search that column. In
other words, you search the index words instead of the individual entries on the pages until you
reach the proper page. This procedure greatly increases the speed and efficiency with which you
search the dictionary.

AMOS Utility Programs 8-5

That was a very simple example. If we were to use the ISAM system to really organize a data base, the
procedure would go something like this:

Suppose you have a data file that contains a mailing list for a thousand customers. Each entry
contains: customer name, address, state, zip code, and 1.0. number.

First, we build a file that contains one logical record for each entry in your mailing list. Each logical
record has a number (called the relative record number or the relative ke0 that marks its relative
position in the file. (For example, the sixteenth record in the file is given the relative record number of
16.) (This file is called the ISAM data file.)

Next, we construct the ISAM index file. The index file contains the keys on which we want to base
our search. For example, if you are going to be searching your mailing list data base by customer
name, the index file would contain all of the customer names that appear in your data file.

The index file is actually organized into three levels of indices. For example, suppose we are looking
for customer "PERKOWSKI, JOHN." The first level index might contain entries such as "PACKER,
G.B."-"PANDORA, MIKE" or "PEACH, GERTRUDE"-"PERLMAN, FRED." ISAM would know that
our key falls into the second group. Each of these entries contains a pointer to another index level.
The second index level sub-divides the keys even further. The third level gives us the actual relative
record number of the data file logical record in which the key "PERKOWSKI, JOHN" occurs.

In other words, ISAM swiftly searches all three levels of the index file to find the number of the data
file record that we want to see. At no time does ISAM actually search the data file for the information
we want; all data retrieval is done via the index file.

ISAM also allows you to construct more than one index file for a given data file. This allows you to
choose which key you are going to search by. (For example, one index file might contain customer
names; another, zip codes.)

Although we talked in our example above as if we were building and maintaining the index file, remember that
ISAM programs automatically build data files and index files for you in response to information that you
supply. You can tell ISAM to search the index file/data file combination by giving commands from within your
own BASIC programs or assembly language programs. You can then read or write data in the data file using
the relative record number returned by ISAM.

CHAPTERS
THE AMOS TEXT PROCESSORS

At the advent of the electronics age, it was predicted confidently that the written word would soon be madE
obsolete as television, audio and visual recorders, and those mysterious machines called computers becamE
widespread. That turned out to be a pessimistic opinion. Rather than obsoleting the art of written com
munication, those and other electronic communications media began to meld with the written word to upgradE
all of communications world-wide. The written word is more popular than ever before.

When writing, it is useful to be able to record thoughts rapidly, conveniently and accurately, before the~
escape. The computer has enhanced these abilities more than even the electric typewriter before it. Usin~
even the most sophisticated electric typewriter, where text can be placed on paper via the fingertips am
typewriter keyboard as fast as the writer can type, paper still has to be rolled into the machine, mistakes havE
to be erased laboriously or painted out messily, and a new or improved thought requires a newly retypec
document. A finished, formatted document involves counting, spacing, tabulating and other mental calcu
lations to make the result pleasing to the eye. There are always improvements, electrically and mechanicall~
but limitations still remain using the electric typewriter or any predecessor of it.

Using the computer, however, you may pass beyond those limitations. Though you still enter your thought!
through a keyboard, you can get the computer, programmed accordingly, to work with you to greatly decreasE
the work you must do and increase the speed in which you do it. The programs which are run on the compute
to assist you in creating, modifying and formatting text are, as a group, called text processors.

There are two broad categories of text processors. One category is known as the text editor. Text editors arE
used to generate text, such as that which you are reading or any other kind of document. The other category i!
known as the text formatter. You use text formatters to arrange your text into a format you desire, which coulc
be as complex as the format of technical documentation, complete with chapter heading, spacing, topic
hierarchy and right and left margins.

Naturally, there are many sub-categories of text editors. However, the two main sub-categories of text editor!
are the screen-oriented and the character-oriented types. The features and differences between these tw(
kinds of text editors will be discussed briefly in this chapter.

Text formatters are also multi- categoried. Some work on general texts, some work specifically to create uniqUE
kinds of text, and so on. These also will be discussed and compared at more length in this chapter.

Please keep in mind that text editors and text formatters are separate entities. And whereas certain kinds 0
text processors have, for user convenience, some of the features of editors incorporated into formatters, anc
vice versa, they are best considered separately. In this chapter we will define more specifically what a tex
editor and a text formatter are, and introduce you to the Alpha MicrO text editors VUE and EDIT. Also, you wil
meet the Alpha Micro text formatters called TXTFMT and PDLFMT.

9.1 THE TEXT EDITOR

A text editor is a computer program which assists you in the creation, alteration and eventual presentation of c
document of written text. Remember that, in relation to computers, text is data that is entered as character~
into the system and stored as equivalent ASCII binary numbers. Later these binary numbers are translatec

9-2 AMOS Text Processors

back into characters for display. Text characters include letters, numbers, spaces, tabs, carriage returns, and
special control symbols. The characters you type in, except for editing commands to the text editor itself, are
treated literally by the text editor program. That is, they are merely repeated in their relative positions within the
file and have no meaning to the text editor.

Using a text editor to write a document of any sort, a file is created and named. You .then type text into that file
(which resides in temporary storage) a character at a time, using a keyboard. You may edit what you create
immediately or at a future time, just as you would any other existent file. When you are ready to save what you
have done, you exit the text editor and your file is saved in permanent storage upon your command.

In the modifying process, a copy of the existing file is placed again into temporary storage. Then you may
insert, delete, move or change characters or words, entire lines or whole blocks of text. In order to help you
locate the text you wish to modify, you may search for a certain character or string of characters throughout the
text. Some text editors allow you to change each appearance of a certain string of characters to some other
string, or delete them altogether, with a single command. When you have modified the text to your satisfaction,
you exit the text editor with a command and the program puts the updated text back into permanent storage.

On the AMOS system, at this point the original (or most recent previous version) of the file is saved as a backup
file in your account. The filename of the version prior to updating remains the same but the extension changes
to .BAK. This gives you a final chance to change your mind or recover from an error if there are problems with
your most recent editing session.

9.1.1 Character-oriented and Screen-oriented Text Editors

The difference between a character-oriented and a screen-oriented text editor is largely in the way the text is
presented to you for editing.

Before the CRT terminal was invented, character- oriented text editors were designed that could be used with
hard copy terminals. Hard copy terminals are machines with typewriter keyboards for input to the computer
and printers (usually built in) for output from the computer. Hard copy terminals cannot permit the fast display
allowed by CRT terminals, since they only provide output in permanent print, otherwise known as hard copy. A
character-oriented text editor uses a special pointer which moves through the text from ASCII character to
character under your control. Once the pointer is placed where you want it, the text editor (by your command)
alters or displays a certain group of text before, after or otherwise oriented around the character you have
pointed to.

The power of character-oriented text editors, aside from their ability to create or alter text without a video
terminal, is the high-speed capability of handling complicated, tedious or repetitious operations upon the
text. In executing a series of steps again and again as you have delineated in a single command, first the
pointer of a character-oriented text editor locates a particular character or group of characters (meaning any
combination of characters ordered in words, lines or some other pattern). Then the editor program alters the
character or group as you have instructed and goes to the next character selected to repeat the operation.

With the increasing popularity of the CRT terminal, the screen-oriented text editors also became popular for
their convepience and power. A screen-oriented text editor visually produces a screenful of text which you
can observe. Also, a moving indicator of light known as a cursor, which you can control in four directions with
keys on the keyboard, appears on the screen. By moving the cursor up and down and through the file, you
can get positioned to alter the text. You can add, delete or move characters, lines or whole blocks of text.
Whereas the screen-oriented text editors do not permit the automatic accomplishment of repetitive tasks with
quite the facility of character-oriented text editors, they have become the preferred text editors overall because
it is much easier to keep track of one's whereabouts while moving through the text You can see more of the
text without specifically asking for it, and can make alterations more quickly.

AMOS Text Processors 9-3

Incidentally, it is important to note that character-oriented text editors will work on CRT terminals to display
text. However, screen-oriented text editors cannot work on hard copy terminals.

9.2 ALPHA MICRO TEXT EDITORS

As specific examples of both screen- and character-oriented text editors, the Alpha Micro text editors VUE
and EDIT are particularly powerful and multi-featured, representing the general attributes of the two types of
text editors. We will introduce VUE and EDIT to you separately in this section, touching on some of their
primary features. Remember that you can use either VUE or EDIT to create any kind of text file. Such a file
might be a book chapter, a business report, a BASIC program, a LISP program, or any other collection of
ASCII characters.

9.2.1 VUE

VUE is a high speed text editor designed for AMOS users. It is screen-oriented; therefore it only works with
CRT terminals. And the text it can work on must be in a sequential file, so that the file can expand as text is
added. Although it has over 70 commands, it is easy to learn and use. VU E can be used to build programs and
write documentation. For instance, the text included in this book was originally written and edited using VUE,
as were the various examples of programs throughout the book.

When you tell VUE to edit a non-existent text file with the intention of creating one by that name, VUE im
mediately tells you that the file does not exist, and asks if you would like to create it. If you type Y (meaning yes)
and a RETURN, your CRT screen fills up with asterisks (*) and the cursor waits at the top line. Then you can
begin entering text of any sort. This is how you create a new file.

Since the text itself is meaningless to VUE, you can enter almost any combination of characters and spaces.
As you create text, you are working in temporary storage. When you exit VUE, your text is written out to
permanent (disk) storage by VUE and assigned the filename you called it when you were creating it.

When you again use VUE to read, continue, update or otherwise alter the file, VU E copies it from the disk into
temporary storage. (If a file is too large to fit entirely in your available temporary storage, VUE writes in as much
as will fit). Then VUE displays the beginning several lines of your file (Le., a screenful) on your CRT and awaits
your commands. This is called the Screen-editing mode. You can see the entire file a screenful at a time by
moving the cursor anywhere within the text. Therefore, you can edit what you see on your screen by moving
the cursor to the characters, words, whole lines or blocks you want to add or delete, and then entering the
appropriate commands.

Sometimes you may wish to move coherent blocks of text from one area to another in the file. Or, you might
want to search out all the occurrences of a certain string of characters. Or just automatically change all
occurrences of a string of characters to something else. These and many more abilities are available in VUE
by first striking the ESCAPE key (labeled ESC or ALT MODE on your keyboard). Your screen clears and then
displays the title of the file you are editing and several other items of information regarding the progress of
VUE. The cursor rests beside the VUE prompt character, >, as VUE waits for a command from you. This is
known as the Command mode of VUE.

In Command mode you can issue many different VUE commands. You can move or copy blocks of text,
search out character strings, or replace all occurrences of a certain string throughout a text. You also have
commands to review and replace a single string at a time, swap strings, copy a string or block to a different
place without removing the original, mark a location and return to it later, and other commands which adjust
the text within the file.

9-4 AMOS Text Processor~

You have the ability, operating from the Command mode, to access other text files in your account withou
leaving VUE. For instance, with one command, you can temporarily display the names of the files in you
account. With another command, you can bring in a separate file from your account and add it to your text. 0
you can take an excerpt from your text and create a new file with it.

Several other commands available in Command mode allow you to set parameters used by VUE in handlin~
your text. That is, you can set or disable certain features, such as instructing VUE to automatically enter c
carriage return when you reach the end of the screen line.

You can exit from VUE several ways, too. You can give the Finished command, telling VUE to write the copy'o
text in temporary storage out to permanent storage and create a backup file. You can merely quit (the C
command), and nothing you have done since you last updated the file in permanent storage will be saved. (Ii
other words, the copy you have in temporary storage will not be written out to the disk, but will be erased frorr
temporary storage.) Finally, you can finish-and-go with the G command, which is a user-defined commanc
you set up so that VUE does a particular sequence of tasks upon exiting. A typical user-defined finish-and·
go command might tell VUE to write the file out to the disk and then (for a BASIC program file), compile the
BASIC program and run the compiled program with a small set of test data.

Each of the many Screen-editing and Command mode VUE commands makes moving around in anywritter
text quick, versatile and convenient for you. For a complete list of the various commands of VUE, refer to the
AlphaVUE User's Manual, (DWM-00100-15).

9.2.2 EDIT

EDIT is a sophisticated character-oriented text editor capable of processing complex strings of commands
enabling you to perform large, repetitious editing tasks quickly and efficiently. You can use EDIT either on a
CRT or hard copy terminal.

You cannot begin to enter text into an empty file using EDIT until you first create the file in your account. This is
done with a program supervised by AMOS called MAKE. After using MAKE, the file is created but empty
Then, using the insert mode of EDIT, you can enter text into the file.

You may use EDIT on any existing sequential text file. Invoking EDIT brings a copy of the file specified intc
temporary storage. EDIT gives you a prompt symbol, an asterisk, as it awaits your commands. A poi nter (callec
DOn indicates your current position in the copy of the text in temporary storage. Upon invoking EDIT, youl
current position is the first character in the file. Almost all of the more than 60 commands you can give to EDIl
either move DOT to a character position in the file, or somehow alter the text oriented around that character
various EDIT commands can search for characters or strings, add or delete characters, lines or sections o·
text, do replacements of words throughout the text automatically, and exhibit portions of the text for YOUi
scrutiny. EDIT commands are one or two characters long and some require arguments. That is, you follo\l\
them with strings of text (as in a search procedure) or by a numeric symbol (as in a character-advance
command, specifying how many characters or lines you want DOT to advance).

You may enter the commands one at a time or in groups of several. You can group the commands by signalin£
to EDIT that you are finished with the insertion of one command, but that it must not execute the commanc
until others are inserted. Finally, when your group of commands is complete, you enter a signal to EDIT tc
execute the entire group of commands.

The greatest power of EDIT today, with the inherent power of screen-oriented text editors making them more
popular, is its ability to do tedious or repetitious tasks more easily. For instance, say you are designing a
complex chart of numbers for printing with lines of division between all the rows and columns. Creating tha'
chart can be a time consuming and tedious job using a screen editor. However, using EDIT, the chart can be
done quickly and effiCiently. With a single group of commands, EDIT can make a column wall character and a
row character, enter the text (the number), move a few characters to the next column and repeat the process

AMOS Text Processors

until the line is complete, then drop to the next line and repeat the whole series. And so on, until the cha
complete. There are many similar real-life examples of uses for EDIT, where by defining what you want via
many commands of EDIT, you can save a considerable amount of effort on your own part.

For a list of all the commands available to you using EDIT, refer to EDIT: Character-oriented Text Editor, (DV
00100-39).

9.3 THE TEXT FORMATTER

A text formatter is a computer program which arranges characters and spaces to place text in a pattern wt
you command. Just as a person might convert a series of typewritten notes into a cohesive typewritten de
ment with a centered header, a body subdivided into paragraphs, and a summary, a text formatter takes ro
text and rearranges it into a finished format according to commands you embed in the rough text as
create it.

The finished format can be similar to a business, personal or legal letter, a report, a book with chapter
pamphlet, a computer program, or any other document that has a form which is standard, traditional, e
venient or efficient. Instead of painstakingly adjusting your rough text to meet the required form, you may in
a command to do the same thing. For instance, when typing, to center a title in the middle of a page you n
first find the middle, then backspace once for each two characters in the title, and finally type the title it
Using a text formatter with this ability, you simply insert the command for centering, then write the title. W
the formatter analyzes the text, ignoring all but the text formatting commands, it automatically centers the
on the screen or printout for you.

Naturally, the text formatter and the specific purpose for which it is designed determines what you cal
cannot do with it. A text formatter designed for general document formatting cannot be expected to form
highly specialized computer program. Conversely, a text formatter originated to help design programs will
do well in arranging a book into chapters and sections. Therefore, a variety of formatters are required. In
following two sections, you will meet Alpha Micro's main formatter, TXTFMT, which arranges manyvarietie
text; and you will briefly meet PDLFMT, the Program Design Language Formatting System, a tool that hE
you to produce a program-design document.

9.3.1 TXTFMT

Most of the Alpha Micro documentation and publications, and many thousands of pieces of written materii
existence, have been put into their final, readable form using the Alpha Micro program called TXTF
TXTFMT is a program that enables you to easily format documents in conjunction with one of the text edi
VUE or EDIT. Rather than having to laboriously type your document in a finished form, you embed the s
TXTFMT commands in your orig i nal text (called the source file) to design the eventual appearance of your j
Filling lines, numbering pages, titling and other formatting considerations are taken care of according to)
commands when you run your source file through the TXTFMT program. And because the formatting CI
mands are embedded in the source file itself, you may simply run the source file through TXTFMT folloVi
any changes you later make to the text. Your text will again be formatted properly, without causing you exten
retyping. Also, if it becomes necessary to change the format itself, the formatting commands are as ec
accessible as the text by using the text editor.

Usually, TXTFMT commands are entered as the text is being written. For instance, if you are writing a docun
and wish to set off a quote in double indentations, you can insert the TXTFMT command IDOUBLE INDE
as you come to the quote and lEND DOUBLE INDENT when you finish it. The commands are made ree
nizable to TXTFMT by the slash (I) in column 1 (the first character position on the line). All other material in)
file is regarded as text by TXTFMT. TXTFMT moves the text itself as needed. For instance, TXTFMT "fills" e

9-6 AMOS Text Processors

line as it processes the file, meaning that as many words as possible are put on each line until the addition of
another word would exceed the righthand margin. Thus, when you enter text, you need not worry about how
many words you place on each line. You can place as few as one character or as many as 300 characters on a
line. (A blank line is retained byTXTFMT, as in a break between paragraphs.) As another instance, if you insert
the command /JUSTIFY at the beginning of your source file, TXTFMT adds spaces between words in a subtle
pattern until all the lines of the text are precisely the same length. This makes a straight, or justified, righthand
margin. The page you are reading is an example of righthand justification.

The margin widths themselves can be controlled by your command via TXTFMT, as can the linesize, spacing
between lines, page numbering, pagesize and so on. These are among certain modes and formatting in
structions automatically assumed by TXTFMT before you insert any TXTFMT commands. At the beginning of
your source file you must insertTXTFMT commands to alter any or all of these automatic default commands if
they are not suitable to you.

Some of the TXTFMT commands, including several of the default commands, require decimal number
arguments. As an example, you have to supply a number to the command that specifies the number of lines
that will appear on a page, if the assumed default number of lines is inappropriate for you. Other TXTFMT
commands require a text argument. For instance, to tell TXTFMT that a certain line of text should appear at the
top of every page as a page header, use the /TITLE command:

/TITLE Year-to- Date Summary

The phrase "Year-to- Date Summary" is the text argument you supply to the /TITLE command, which causes
that title to automatically appear at the top of every page in the document.

TXTFMT allows you to organize your documents into numbered sections. For example, notice that you are
reading Section 9.3.1, "TXTFMT." At no time did the authors have to worry about just what numbers ought to
be assigned to this section- TXTFMT did the numbering for us based on the numbers of the preceding
sections.

When the source file is complete with the textual matter and the text formatting commands that suit your
purpose, you are ready to use the TXTFMT program itself. At the AMOS command level, you type "TXTFMT"
and the name of the source file you have completed, along with the names of any other files you want to format
into the same document. You must give the filenames in the order in which you want the files to appear in the
finished, formatted document. From the separate source files, one longer, concatenated list file is created by
TXTFMT which is assigned the name of the first source file you gave, and the extension of . LST.

As it proceeds through the source files, TXTFMT reports verbatim any incorrect text formatting commands
embedded in the files. To correct these errors, you may again use VUE or EDIT on those source files, search
out the errors using the features of the text editor, and correct them. Then exit the text editor normally and once
again use TXTFMT on the files. Your final result will be a structured . LSTfile containing text arranged according
to the commands you have given throughout the source file or files, with only a minimum amount of work on
your part.

There are over 60 separate commands available to you with TXTFMT. For a complete, explanatory list of these
commands, possible error messages and other instructions regarding TXTFMT, please refer to the TXTFMT
User's Manual, (DWM-00100-07).

9.3.2 PDLFMT

The other Alpha Micro text formatter is PDLFMT, standing for the Program Design Language Formatting
System. Since it is a very specifically applied tool, only the briefest introduction of its concepts is necessary
here.

AMOS Text Processors 9-7

PDLFMT helps you to produce a program-design document. A program-design document is a type of outline
that helps you in the arrangement of a computer program, as a step beyond merely flowcharting the program.
A program- design document looks like a printout of a program with the major parameters of your requirements
filled in. It enables you to add the more specific details of each section as you reason them out.

To use PDLFMT, you must first use one of the text editors EDIT or VU E to write your document of parameters in
a very rigid structure. That structure contains four commands, each preceded by a slash in column 1. Those
commands are IT (Design Title), IS (Section Name), IP (Procedure Name), and IR (Reference Tree). You begin
by assigning the design title to the document. Then you name the first section and describe the section and
your intentions for it. You detail the procedures of the section, giving each procedure a name and a description
of design. There are several keywords you may insert within the procedures which PDLFMT uses to format the
design document. Each following section of the design document is structured the same way, until the entire
program design is outlined.

As the last command of the document, you may optionally make a single request for one or more reference
trees. When you include aiR and a list of the procedure names from the various sections, PDLFMT generates
a structured tree for each procedure, showing which other procedures it calls.

Once your source file is finished, exit from the text editor normally and at AMOS command level type "PDLFMT"
and the source file name. (PDLFMT assumes a .PDL extension if you have not assigned another to the source
file.) When formatting the source file, PDLFMT reports errors to you. The formatted version of the file is
assigned the extension .LST, and has a table of contents, a program-design outline and (optionally) one or
more reference trees.

For a complete list of instructions regarding the use of PDLFMT, refer to Program Design Language Formatting
System, (DWM-00100-26).

CHAPTER 1
AMOS LANGUAGE PROCESSOR~

This chapter will introduce you to the major language processor programs on the AMOS system. You'll me
BASIC, PASCAL, LISP, and the AMOS macro-assembler program, MACRO. The first few sections talk abo
some basic concepts behind the AMOS language processors. If you are already familiar with these idee
("computer languages," "compilers," and "interpreters") you may want to skip on to later sections that ta
specifically about the AMOS language processors (e.g., Section 10.4, "AlphaBASIC").

10.1 COMPUTER LANGUAGES

In earlier chapters, we mentioned that one of the major benefits of an operating system is that it allows you'
communicate with your computer system in a way that is more comfortable for you than entering the machir
language understood by that computer. (You'll remember that we defined machine language as the set of all '
the instructions that you can give to the CPU which it can understand directly.) Because the operating syste
has very specific functions, the instructions that you can enter to it are also very specific and related only'
system activities. For example, you cannot ask the operating system to perform a general function, such as .

, compute a mathematical value, but you can ask it to tell you what files are in your disk account. Therefore, yOI
computer system gives you another tool that allows you to communicate in a more general way with tt
computer- computer languages.

A working definition of "language" might be that it is a large set of meaningful patterns that communica
ideas. A computer language allows you to write groups of instructions (a program) that the computer can can
out. A computer language can be machine langL!age (which directly communicates instructions and data <

the CPU) or it can be a higher-level language (such as BASIC) that is interpreted by a machine langua~
program. (Those languages we call higher-level are more comfortable for us than machine language becau~
they look much more like the languages we humans are used to, and because they let one instruction perfon
the same function as perhaps hundreds of machine language instructions.)

The type of computer language you use to write your programs depends on the applications performed t
that program. For example, one computer language might have commands that make numeric computatic
very simple, while another language might be very good for writing programs that manipulate text. Still anothl
language might generate programs that execute very quickly.

Just as English has a set of rules concerning the ways in which you can combine words into sentences ar
paragraphs, so computer languages also have strict rules that govern the ways you can form their elemen
into program lines and programs. The specific commands and ways in which you can use them vary wide
among computer languages, but all computer languages have one thing in common- they help you I
communicate with the computer. The computer languages you can use on the AMOS system are: BASI(
PASCAL, LISP, and assembly language.

10-2 AMOS Language Processors

10.2 WHAT IS A LANGUAGE PROCESSOR?

Anytime we talk to the computer in a language that is not machine language, we must use a translator of some
sort that can transform our communication into a pattern that the computer can handle. Such a translator is a
language processor.

Usually when we use the term "language processor," we refer to a program that can understand and act upon
one of the familiar computer languages such as BASIC or PASCAL. (Of course, in a limited sense, AMOS itself
is a language processor. We mentioned in Chapter 3, "Who is AMOS?", that the set of instructions that you
can give AMOS make up the AMOS command language.)

At this point we have already made the distinction between a computer language and the program that
processes that language. Remember that when we talk about the BASIC language, we are talking about an
abstract computer language named "BASIC." Programs written in this language are not directly executable
by the operating system unless they are first translated and controlled by the BASIC language processor. The
language processor program almost always bears the same name as the language it processes. For example,
when you type:

..J3ASIC [RET)

you are telling AMOS to execute the language processor that understands the BASIC language. So, remember
that when we talk about being "in BASIC," we mean that you are communicating with the program that
processes programs written in the BASIC language. On the other hand, when we talk about a "BASIC state
ment," we are talking about an element in the BASIC language.

10.3 INTERPRETERS AND COMPILERS

We class language processors into one of two groups, according to how they process programs. These two
groups are interpreters and compilers.

10.3.1 Language Interpreters

An interpreter reads each line of a program, and performs the commands in that line as it reaches them. For
example, when a BASIC interpreter sees this line in your program:

PRINT"HELLO"

the interpreter recognizes the PRINT command. It then transfers control to the routine within itself that handles
the PRI NT command. Then control passes back to the main portion of the interpreter which scans and
interprets the next program statement.

When it finishes reading, interpreting, and acting upon a program line, the interpreter goes on to the next line
until it reaches the end of the program. If you ask the interpreter to execute your program again, it goes
through this entire process of recognizing and acting upon program commands again, as if it had never seen
your program before.

A major advantage of an interpreter is that such language processors are usually interactive. That is, you can
enter program statements to the language processor, and the interpreter will tell you as you enter it whether a
program statement is in legal form. You can even enter language statements that are not part of a program,
and the interpreter will execute them directly as you type them in, instead of waiting to execute an entire
program.

AMOS Language Processors 10-3

Of course, interpreters also have disadvantages. Because it must go through the same process of recognizing
and executing program statements each time it processes your program, an interpreter is usually slower than
a compiler when executing the same program. Another drawback to the use of interpreters is that you must
keep the interpreter in memory along with your program; this can use up quite a bit of memory, since most
interpreters are relatively large programs.

10.3.2 Language Compilers

The second type of language processor is called a compiler because it actually "compiles" or translates your
program into another version which is closer to machine language. (A traditional, "strict" compiler translates a
source program directly into machine language. Other compilers compile source programs into a pseudo
machine language. Regardless of its type, the compiler reduces your program to a form that is closer to the
computer's own level.) This process of translation is called compiling a program or program compilation.

After compiling a program, you have two versions of it: the original (or source) program and the translated
version (or compiled) program.

One of the benefits of compiling a program is that most of the scanning and recognition process that an
interpreter must do every time it reads your program is done only once by the compiler- at the time that it
compiles your program.

The compiler thus allows you to separate the processes of program analysis and execution. You only need to
compile a source program once. Then you can execute the compiled program at any time without going
through the preliminary processing done earlier. (Of course, if you change your source program, you will need
to re- compile it so that the compiled program reflects those changes.) Since the source program has been
translated and reduced, the compiled program takes up less memory, and since the compiled program is
closer to the computer's own machine language than the source program, it runs faster than an interpreted
version. In addition, when you execute the compiled program, you do not have to have the compiler in
memory along with your program. Depending on the compiler, your compiled program may either be executed
directly by the computer, or you may need to have a small machine language program in memory called a
run-time package, which completes the translation between your compiled program and the computer's
machine language.

10.3.3 Theory Versus Fact

Now that we've given a very general discussion of interpreters and compilers, we should mention that although
in theory the differences between them are very clear, in reality, most interpreters and compilers share some
features of each other. That is, you will rarely find a "strict" compiler or a "strict" interpreter.

For example, most interpreters perform a process called tokenization, wherein the processor substitutes
special tokens for BASIC statements. That is, when it reads in a line from a BASIC program, an interpreter
might (for example) substitute a special one- byte symbol for the PRI NT command. This allows the interpreter
to go much faster later when it processes that line, because it doesn't need to scan the entire word "PRINT,"
but only needs to recognize the special PRINT token. A tokenized program also takes up less room in
memory. Tokenization is a very limited type of compilation.

As another example, very few compilers actually translate programs directly into machine language. Most
compilers (e.g., AlphaBASIC) compile programs into a pseudo- machine language form, which is then
executed by a small machine language program called a run-time package. (In the case of AlphaBASIC, the
run-time package is called RUN.)

10-4 AMOS Language Processors

10.4 ALPHABASIC

Because AlphaBASIC is by far the most widely used language processor on the Alpha Micro system, we will
talk about it in some depth. For detailed information on using AlphaBASIC, refer to the AlphaBAS/C User's
Manual, (DWM-00100-01).

BASIC is the most popular higher-level language on microcomputers today. Much of this popularity stems
from the fact that it is relatively easy to learn. It was designed as a computer language for beginning program
mers; in fact, its name is an acronym for "Beginner's All-purpose Symbolic Instruction Code."

Because it has been implemented by so many manufacturers on numerous computers, BASIC is no longer a
standardized language. Many different versions of it exist, each slightly different from the other. Alpha Micro's
BASIC, AlphaBASIG, is an extremely powerful version of BASIC that contains a number of unusual features
that make it uniquely suitable for business and scientific applications programming.

If you've never seen a BASIC program, you might be interested in taking a look at a very small and simple
program written in AlphaBASIC:

10 REM Calculate number of years it takes to double your money.
20 REM Get information and initialize new principal and number of years.
30 START:
40 INPUT "Enter principal: $", MAINPRINCIPAL
50 INPUT "Enter rate of interest (in %): %", RATE
60 YEARS = 1
70 PRlNCIPAL = ~AI~PRINCIPAL
80 REM Now caLcuLate the new principal
90 CALCULATE:
100 INTEREST = PRINCIPAL * (RATE/100)
110 PRINCIPAL = PRINCIPAL + INTEREST
120 IF PRINCIPAL >= (2 * MAINPRINCIPAL) THEN GOTO SOLUTION
130 YEARS = YEARS + 1
140 GOTO CALCULATE
150 REM We're finishea. Print the answer.
160 SOLUTION:
170 PRINT "At";RATE;"%, in";YEARS;"years you wiLL have $";PRINCIPAL

Figure 10·1
Sample BASIC Program

(NOTE: The characters "REM" in the example above designate comments, known in BASIC as remarks. A
program comment explains the purpose of the surrounding program statements. Comments are not processed
by the language processor, but are solely for the programmer's benefit in helping him or her to figure out what
the program is supposed to be doing.)

Below we discuss some of the features that make possible AlphaBASIC's power and versatility:

1. Although AlphaBASIC is a compiler, it incorporates the best features of an interactive inter
preter as well. It accomplishes this by allowing you to use BASIC in two different modes: you
can either use BASIC in compiler mode (as a traditional compiler) or you can use BASIC in
interactive mode (simulating the operation of an interactive interpreter). To use BASIC in
compiler mode, create your program using one of the system text editors. You may then
compile that program from AMOS command level by using the COMPIL command. To run the
compiled program, use the system RUN command. (COMPIL is the compiler portion of
AlphaBASIC; RU N is the AlphaBASIC run-time package.) Note that at no time in this process

AMOS Language Processors

do you "ente; BASIC; that is, you are operating at AMOS command level when you compile
and execute the program, and you cannot enter direct commands to BASIC except through
your program.

To use AlphaBASIC in interactive mode, enter AlphaBASIC by using the system BASIC
command. You are now communicating with AlphaBASIC (that is, you are "in BASIC"), and
can type in your program, load in an existing program, or enter individual statements to be
executed directly. (The BASIC command loads into memory both the compiler and run-time
package portions of AlphaBASIC.) In interactive mode, AlphaBASIC simulates an interactive
interpreter by compiling each line of your program as you enter it, giving you immediate
feedback if an error occurs.

2. Unlike conventional BASICs (which usually allow only two-character variable names),
AlphaBASIC allows variable names of any length in either upper or lower case. (For example,
instead of being restricted to cryptic variable names such as "A1 ", you can use a more
descriptive variable name such as "lnvoiceNumber".)

3. To help you to structure your programs so that they are easy to read and maintain, AlphaBASIC
allows the use of program labels to identify specific program modules. (See our sample
program above- the program lines that end with colons are labels.)

4. BASICs break down data into two types: floating point numeric data and string data. (A string
is data made up of ASCII characters. Floating point is a method the computer uses to internally
represent numbers by storing the significant digits of the number along with a number (the
exponent) that tells the computer where to insert a decimal point when it displays that number.
Floating point representation thus allows the computer to store a number that is physically too
large or too small to be expressed directly by the CPU.) AlphaBASIC also supports variables
that contain binary, integer, and unformatted data.

5. Much of the flexibility and sophistication of AlphaBASIC that makes it so useful for business
applications programming result from some unique data-handling features. These features
include:

• The ability to form a template in memory (via MAP statements), which allows BASIC to
transfer data between your program and the disk with optimum speed and flexibility. MAP
statements are most often used to define groups of variables which will be transferred in
and out of disk files, but MAP statements are ~Iso useful for sophisticated array allocation
and for linking with assembly language subroutines.

• Advanced string subscripting. Besides the more common LEFT$, MID$, and RIGHT$
functions which allow you to extract portions of a string, AlphaBASIC also supports a
powerful form of string subscripting which allows you to excerpt a substring by specifying
the beginning and ending positions of that substring within the master string, or by
specifying the beginning position and the length of the substring. (These forms of string
subscripting accept either positive or negative values, which specify either left- relative
positions or right-relative positions within the master string.)

AlphaBASIC also has functions that allow you to compare strings, compute the length of
a string, search a string to see if another string is embedded in it, and convert strings to
numeric data (and vice versa).

• Mode independence. Most BASICs require the use of special functions to convert string
data to numeric form, or vice versa. Although AlphaBASIC also supports these functions,
it automatically converts strings and numeric data that appear in expressions so that the

10-t

10-6 AMOS Language Processors

results of such expressions are in the proper format. (NOTE: An expression (e.g.,
PRINCIPALX100) is a combination of constants (Le., unchanging values) and/or
variables.) For example, the phrase:

"34"+"5"

concatenates two strings to form the string: "345". However, the expression:

34+"5"

adds a numeric constant (34) and a string ("5"). AlphaBASIC converts the string "5" to
the number 5, so that the result of the expression is 39 .

• Formatting data displays. The PRINT USING statement (an extension of the standard
data display command- PRINT), allows you to format data into specific forms that are
suitable for business reports, screen displays, etc. For example, you can use the PRINT
USING statements to format a list of numbers so that dollar signs precede each number,
and commas are inserted every three digits to the left of the decimal point.

Other features in AlphaBASIC include: calls to external assembly language routines (such as sort routines,
multi- user file locking routines, etc.); chaining to system commands, other BASIC programs, or command
files; use of the system ISAM package for efficient data retrieval; allocation and use of sequential and random
files; error and Control-C trapping and processing; terminal display functions; and a complete set of
mathematical functions.

AlphaBASIC also supports several unique debugging features. While using BASIC in interactive mode, hitting
the line-feed key tells BASIC to Single-step the program in memory (that is, to execute one line at a time). After
each line is executed, you can enter direct statements which allow you to examine and change the value of the
program variables, open and close files, and so on. The BREAK command allows you set and clear break
points. (A breakpoint designates the spot in your program where you want BASIC to interrupt execution so that
you can examine the values of program variables or perform other debugging functions.)

NOTE: We've already mentioned the term "function" as an element of a program. A function is a special
command that accepts one or more strings or numbers (called the arguments of that function), and then
returns an answer to you by performing some computation on those arguments. We say that we "pass"
arguments to functions, and that they "return" an answer. An example of a function is the BASIC command,
SOR. SOR accepts a number as an argument and returns the square root of that number. For example, the
function SOR(39) returns the number 6.245. Other functions perform more sophisticated procedures. Some
computer languages allow you to write your own functions, called user-defined functions.

10.5 ALPHAPASCAL

PASCAL was developed in the early 1970s by Jensen and Wirth as a response to the need for a programming
language that encouraged good programming "style." It was designed specifically to teach the concepts of
computer programming and to make easier the task of efficiently implementing large programs. PASCAL is a
general-purpose language that is applicable to a wide range of numeric and non-numeric problems. It
contains a relatively small number of statements, but these can be combined in a variety of ways to construct
powerful programs.

PASCAL is being used with increasing frequency in academic and industrial installations. The number of
students that are taught PASCAL as their first programming language increases every year.

AMOS Language Processors 10-7

A noteworthy feature of PASCAL is that it encourages the use of step-wise refinement. That is, the programmer
breaks down his or her task into a number of subtasks. Each subtask is coded into a subprogram (called a
procedure) within the main program. This encourages the programmer to construct a well-structured,
modular program, and creates a program that is easier to read and maintain. PASCAL also encourages the
creation of an easy-to- read program by requiring that the front of the program contain definitions of the data
types used by the variables in that program. (We call this process declaring the variables.)

An important feature of the Alpha Micro PASCAL is that it allows you to execute programs that are larger than
your memory area. (That is, we say that it is a virtual PASCAL.)

The major advantage of PASCAL over other high-level programming languages is that it is a standardized
language: that means that programs written in standard PASCAL can run on most other computers that
support PASCAL. Other features PASCAL supports which make it a powerful programming language are:

• User-defined functions. Unlike AlphaBASIC, PASCAL allows you to create your own functions.

• Advanced data structures. PASCAL supports advanced data structures (such as sets and
linked lists) that are usually quite difficult to construct in other programming languages.

If you are curious about what a PASCAL program looks like, take a look at the very simple example below:

(* Read 2 integers and print their sum *)
PROGRAM ADDTWO (INPUT,OUTPUT);
VAR VALUE1, VALUE2, SUM: INTEGER;
BEGIN (* ADDTWO *)

WRITE ('PLease enter the 1st number, a space, and 2nd number: I);

READ (VALUE1,VALUE2);
SUM := VALUE1 + VALUE2;
WRITELN ('The sum is: ',SUM)

END. (* ADDTWO *)

Figure 10·2
Sample PASCAL Program

PASCAL is usually implemented as a compiler that compiles your PASCAL programs either to actual machine
language or to a pseudo- machine language level. For information on Alpha Micro's specific implementation
of PASCAL, see the AlphaPASCAL User's Manual, (OWM-00100-08).

10.6 ALPHALISP

The LISP (List Processing) programming language is based on John McCarthy's 1960 work on non- numeric
computation. It has become increasingly popular in the last few years as more and more programmers begin
to realize the power of LISP in certain programming applications.

LISP is an awkward language for applications that require a great deal of numeric analysis (Le., programs that
do massive "numbercrunching"), but LISP can perform powerful and sophisticated symbol manipulation.
Therefore, it is widely used in academic installations for research in natural language and artificial intelligence
and it is also used in the business world for relational data base applications. LISP is often used for programs
that associate items of information (for example, mailing list programs) and other programs that do large
amounts of information retrieval.

10-8 AMOS Language Processors

LISP is unique among programming languages, with a look and "feel" all its own. Although some programmers
find a LISP program hard to read and maintain, others feel that LISP's power in the areas at which it excels
more than make up for the fact that it is not one of the easier programming languages to learn and that LISP
programs look much different than those written in other languages.

The major structure of the LISP program is the1list. All data and programs are made up of lists, and have the
same syntax. This means that LISP makes little distinction between programs and data. For example, it is very
easy to write a LISP program that reads another LISP program as data.

Alpha Micro's implementation of LISP (the AlphaLiSP interpreter) is based on a version of LISP called "UCI
LISP," which is in turn based on Stanford Artifical Intelligence Project's LISP 1.6. For information on using
AlphaLlSP, refer to the AlphaLiSP User's Manual, (OWM-00100-05).

If you are interested in what a small LISP program looks like, take a look at the sample below:

(DEFPROP DBASE
(LAMBDA NIL

(PROG (NAME KEY INFO ACTION)
LOOP <TERPRI)

EXPR)

(PRINC Gl"Enter 'action (update or query)' 'name' 'key' ")
(SETQ ACTION (READ»
(SETQ NAME (READ»
(SETQ KEY (READ»
(COND

«EQ ACTION Glupdate)
(PRINC Gl" Enter data ")
(SETQ INFO (READ»
(PUTPROP NAME INFO KEY»

«SETQ INFO (GET NAME KEY»(PRINC INFO»
«PRINC Gl"No such information."»)

(GO LOOP»)

Figure 10-3
Sample LISP Program

The example above is part of a LISP program that associates information (for example, names and phone
numbers) for a data base management system.

10.7 ASSEMBLERS

The earlier sections in this chapter concerned themselves with higher-level language processors such as
BASIC and PASCAL. Another kind of language processor (called an assemble" transforms your program
(called an assembly language program) directly into machine language. MACRO is the Alpha Micro
assembler.

How does assembly language differ from a higher-level language? Remember that a higher-level language
statement may translate into hundreds of machine language elements. Each assembly language statement
translates directly into only one machine language statement. (That's why assembly language is not called a
higher-level language- it is, in effect, just another way of writing machine language.) (If you are interested in
the assembly language used by the Alpha Micro system, refer to the WD16 Microcomputer Reference Manual,
(OWM-00100-04).)

AMOS Language Processors 10-

Assembly language was developed to help machine language programmers. You can imagine how tedious
would be to enter into the computer a machine language program that consists of thousands of numbers. Th:
is just how things were done until someone finally had the brilliant idea of associating each machine languag
instruction with a symbolic name that was easier to remember than the actual numeric value of the machin
language instruction, and then creating a program that translated those symbolic instructions into machin
language.

Instead of having to remember the actual numbers that represent machine language instructions, machin
language programmers (also known as assembly language programmers) only have to remember a set (
instruction names (called assembly language mnemonics). The programmer constructs his or her prograr
out of these statements, and then has the assembler program "assemble" the program into machin
language. Besides mnemonics that translate directly into machine instructions, assemblers also recogni2
special symbols. (Some of these special symbols and statements are called program labels, CPU reg i StE
symbols, data storage definitions, assembly control statements, and macro definitions.)

Even though assembly language programming was made much easier with the advent of the assemblE
program, assembly language is still much harder for most people to learn and use than a higher-lev,
language. For one thing, assembly language programs must deal much more directly with the CPU tha
programs written in higher-level languages. That is, assembly language programs are "machine-oriented
Therefore, the assembly language programmer must usually have a greater understanding of the hardwar
with which he or she is communicating than does the programmer of a higher-level language. The assemb
language programmer must also have a greater understanding of the inner workings of the operating systen

Assembly language programs usually contain many more program statements than equivalent programs in
higher-level language, and assembly language programs are usually harder to test, debug, and modify. Wh
then, is so much programming done in assembly language? (For example, all of the AMOS command:
drivers, and language and text processors were written in assembly language.)

The assembled, machine language versions of assembly language programs are usually much smaller tha
higher-level programs that perform the same functions. Because machine language programs communical
directly with the computer, they generally execute much faster than higher-level language programs- somE
times hundreds of times faster. Another reason why much systems programming is still done in assembly i
that most higher-level languages, while undeniably powerful, were not designed to deal with hardware- an
operating system-related problems. It is sometimes just too cumbersome to "get down to the computer'
level" in a higher-level language. So, for applications that interface with the hardware and the operatin
system, and that demand high speed, assembly language is still widely used.

If you would like to see what part of an assembly language program looks like, take a look at the eX;:lmpl
below:

; SampLe program to print powers of two.
· ,
· ,

COpy
· ,

MOVI
LOOP:

DCVT
CRLF
ASL
BNE
EXIT

SYS

1,R1

0,2

R1
LOOP

; Set R1 to 1 (2UPOXUP).

; Output number in decimaL.
; Move cursor to next Line.
; Shift R1 Left one bit.
; Keep Looping unless R1=65536 (i.e., 0).

Figure 10-4
Sample Assembly Language Program

10-10 AMOS Language Processors

The sample above computes and displays powers of two. (NOTE: The semicolons indicate assembly
language program comments.)

10.7.1 The Alpha Micro Assembly Language Programming System

The Alpha Micro Assembly Language Programming System consists of: the assembler program MACRO; the
linkage editor LINK, which connects different program segments into one program and resolves references
segments make to each other; the symbol table generator SYMBOL, which makes the user-defined symbols
in your program accessible to the Alpha Micro debugging program, DDT; and, the Alpha Micro assembly
language program debugger DDT, ~hich allows you to examine and change your program in memory. For
information on using MACRO, LINK, SYMBOL, and DDT, refer to the AMOS Assembly Language Programmer's
Reference Manual, (DWM-00100-43). Refer to the AMOS Monitor Calls Manual, (DWM-00100-42), for infor
mation on the calls your assembly language programs can make to routines embedded in the operating
system.

When you write an assembly. language program, the usual sequence of events is:

1. You create the source program using a system text editor.

2. Next you use MACRO to assemble your source program. If any errors occur during assembly,
you probably will want to edit the program again to find the problems. When your program
assembles without error, you can go on to the next step.

3. If the program contains references to other program segments, you now use the LINK
program to link the segments together.

4. If you are going to be using the debugger program, DDT, you now use SYMBOL to create a
symbol table file. This makes sure that DDT can access the user-defined symbols (such as
program labels) that are in your source program.

5. Finally, you can now use DDT if you want to test and examine your program.

The Alpha Micro assembler, MACRO, is perhaps the most important part of this programming system. It does
much more than just translate mnemonics directly into machine language. Some of the features that make
MACRO a powerful macro-assembler are:

• MACRO is a multi-pass assembler. That means that it scans your assembly language
program more than once, unlike single-pass assemblers. This gives you flexibility in writing
your programs, since MACRO is able to resolve program statements that refer to later portions
of the program.

• MACRO is a full macro-assembler. In other words, it is able to process and use macros. (A
macro is a special instruction that you define which can assemble to a number of machine
instructions. In effect, you tell the assembler, "When you see this macro, substitute in this
series of instructions.") You may nest macro calls and pass arguments to macros.

• You may access external libraries of programs and routines. For example, the COPY SYS
command tells MACRO that you want to use one or more of the 70 calls (which appear in
macro form in the SYS library) that enable you to use many of the routines embedded within
AMOS.

• MACRO allows you to generate re/ocatable code (Le., programs ~hat are independent of
absolute memory addresses). The programs you assemble can thus be run by any user,
regardless of the specific memory addresses he or she is using as a workspace.

AMOS Language Processors 10-11

• Assembly language programs assembled by MACRO are segmentable. That is, you can
divide a large program into smaller, independent segments.

• MACRO understands conditional assembly directives. That means that you can control
whether or not certain portions of your program are assembled, depending on a variable's
value when you assemble the program. This allows you to generate several different machine
language programs from one assembly language program. In other words, you can tailor a
specific program for several different uses. You may nest conditional assembly directives.

10.8 THINGS TO COME

Now that you know something about the programs that run under AMOS, it is time to talk about AMOS itself.

The final section of this book introduces you to the concepts behind an operating system. You'll also learn
about the actual components that combine to form the Alpha Micro Operating System.

PART III
AMOS OVERVIEW

Chapter 11 discusses the basic concept of an operating system. This chapter also gives a general overvie
of the Alpha Micro Operating System. The rest of the chapters in this book talk in more detail about th
concepts introduced by Chapter 11. Therefore, we suggest that you read Chapter 11 first; then, read th
particular chapter in Part III that is organized around the topic you are interested in. We remind you that th
is not a section aimed at applications. We do not, for instance, discuss how to write terminal or device drivl
programs or how to use the AMOS monitor routines. Systems programmers will want to read the AMO
Monitor Calls Manual, (DWM-00100-42), and the AMOS Assembly Language Programmer's Reference Manu~
(DWM-00100-43), for information on interfacing their programs with the Alpha Micro Operating Syster
System Programmers should also refer to the documents in the "System Programmer's Information" sectio
of the AM-100 documentation packet.

CHAPTER 11
GENERAL STRUCTURE

Since you are reading Part III of this book, we assume that you are interested in the inner workings of AMOS.
Because this book serves as an introduction to your system, and because the operating system can change
with each new system software release, we won't be going into great detail on the various components of the
Alpha Micro Operating System. Our main purpose is just to give you some idea of how the major portions of
AMOS interact and work together to provide a flexible and sophisticated computer system.

NOTE: This seems to be a good point to inject a note of caution. We have simplified our discussions
of the operating system so that you can get a general feeling for how things work. But, this is not
meant as a technical manual. Remember that some details have been simplified or omitted. For
detailed information, see the AMOS Monitors Call Manual, (OWM-00100-42), and the "System
Programmer's Information" section of the AM-100 documentation packet.

11.1 WHAT IS AN OPERATING SYSTEM?

The next few chapters discuss in some detail the various functions of AMOS, but for now let's just talk in
general about what an operating system does. Of course, operating systems vary widely in power and
complexity, but most of them perform the same kinds of functions (although with differing degrees of
soph istication).

Imagine, for the moment, that you have the following units:

One or more terminals.

A hard or floppy disk drive.

Memory.

A printer.

You also have a computer that contains all of the additional hardware necessary to connect these devices.
Hardware doesn't do you any good unless you can communicate with it, so now you need the software that
can interface these components into a computer system.

Few people are really interested in entering machine language programs into a computer via toggle switches.
Even fewer people would want to include in each machine language program the code that enables that
program to communicate with disks, terminals, and other devices. If you are faced with providing a computer
system with software, at this point you probably decide that it would be much more efficient if all of the support
programs could be written only once, and then made available to other programs. This collection of programs,
whose purpose is to assist in the running of other programs, is called an operating system or monitor.

Your first task, then, is to design your own operating system. Even for a single- user system, this is a difficult
task; when we consider a system that can handle multiple users and multitasking, we are talking about a
formidable endeavor. But, let's start by breaking our operating system down into the major tasks we need to
perform:

11-2 General Structure

1. The first thing we have to worry about is being able to communicate with the CPU via our
terminal keyboard, instead of with toggle switches. So, perhaps the first programs we write will
be those that handle transferring data between the terminals and the computer system.

(NOTE: Terminals are simply the hardware devices that enable us to communicate with the
computer. CRT terminals or video display terminals are terminals with a video screen on which
the computer displays data. A hard copy terminal is a terminal that prints your communications
with the computer on paper instead of displaying the interaction on a video screen. Both types
of terminals have keyboards on which you enter data and commands.)

The Terminal Service System handles such things as echoing characters on our terminal
display as we enter them and discarding control-characters from our input that the operating
system does not use. The most important function that the Terminal Service System performs is
to copy the characters we enter into a buffer so that other portions of the operating system can
access and process our input. (NOTE: A buffer is a storage area in memory into which data is
copied so that it can be worked upon.)

2. Perhaps the most important portion of our operating system is the Command Processor. This
group of programs analyzes the characters that we enter and performs the proper responses
to the commands made up of those characters.

3. The next thing we will want to do is to develop a set of routines that will help our programs to
read from and write data to peripheral devices. These are the Logical I/O Routines. They allow
our programs to communicate with devices without worrying about the physical attributes of
those devices. For example, our program might know that it wants to read the first record of a
file. It tells the Logical I/O Routines so, and this portion of the operating system decides what
physical device address to access.

4. Special I/O problems exist when we talk to the disk because it is organized into files, so we
need a set of programs to handle disk management. These programs (called a Disk Service
System) work with the account and directory structure of the disk.

5. Another important function of our operating system is the handling of memory. The computer
must use main memory for program execution and data manipulation. This group of programs
tells us what areas of memory are free, and assigns memory areas needed by the programs
we run on the system.

6. Many of our operating system programs will often need to perform the same kinds of functions
(e.g., numeric conversions, file lookups, and display of account numbers). So, another type of
operating system routine will be the utility routine. The utility routines are those programs used
by other operating system programs (and, sometimes, your own programs as well) to perform
frequently needed "housekeeping" functions. Perhaps the most important of the utility routines
will be the ones that perform numeric conversion of data. All data is stored and manipulated in
binary within the computer, yet we must be able to enter and display it in a format familiar to
humans. The numeric conversion routines allow us to convert binary numbers to octal,
hexadecimal, decimal, and character representations, and vice versa. We must also be able to
handle any special representations used by our particular system.

In summary, our basic operating system has these components:

• Terminal Service System - Gives our terminal a way to communicate with the software that
runs on the system.

• Command Processor - Processes and responds to the commands we enter.

General Structure

• Logical I/O Routines and Disk Service System - Takes care of reading from and writing to
devices.

• Memory Controller - Controls and allocates memory.

• Utility Routines - Perform frequently used "housekeeping" functions.

11·

If we are able to create an operating system that performs these functions, we now have a fairly complE
operating system for a one- person computer. However, a timesharing operating system is more complicate
it has to worry about all the added difficulties that arise when we have more than one user on the system at t
same time.

Besides increasing the complexity of all of the functions above, a time sharing operating system requir
several new sets of programs:

1. Job Scheduler and Controller- This component of the operating system schedules user jobs
that run on the system and allocates CPU time and resources to those jobs.

2. Memory Management System - When several users are running on the system, it often
becomes necessary to add memory beyond the direct addressing limit of the CPU. The
memory management system allows you to set up multiple banks of memory, so that the total
amount of memory on the system can exceed the normal limit.

11.2 BASIC STRUCTURE OF AMOS

Fortunately, you don't have to write your own operating system. AMOS performs all of the functions discussl
above as well as a variety of others. We'll talk about some of these components of the operating system
more detail in later chapters, but first we'd like to give you a brief overview of how these routines work togett
to form the Alpha Micro Operating System.

To begin with, AMOS contains a program (we'll call it the Exec) that coordinates all of the operating syste
functions. It also handles all of the job scheduling and control functions.

When you enter a command at AMOS command level, the Terminal Service System (TRMSER) places tl
various characters into a buffer assigned to your job. Exec (which is always waiting for new characters to I
input), takes these characters and sends them to the Command Processor.

The Command Processor then looks for the program or command file requested by your command, al
loads and executes it. (If the Command Processor can't find a program or command file that corresponds
your input or for some reason cannot load and execute the program, AMOS displays the appropriate en
message via the Terminal Service System.)

Meanwhile, the Exec communicates with the Memory Controller and the File Service System (FILSER)
response to the demands made by your commands and your programs. (FI LSER performs the functions of tl
Logical I/O Routines we discussed earlier.) The Exec may also call on various support routines (such
numeric conversion routines) in the process of carrying out its duties.

The diagram below may give you some idea of how this entire interaction takes place:

11-4 General Structure

User Programs

4~

"
Terminal Service AMOS Exec .- .. File Service

..... 4.

~

Command Processor Memory Manager Utility Routines

Figure 11-1
General Structure of AMOS

NOTE: Notice that the communication between the various parts of AMOS is not one-way. Different
components communicate indirectly with one another by going through Exec.

11.3 AMOS MONITOR CALLS

Many of the functions that AMOS performs are functions that your assembly language programs will have to
perform too. For example, your assembly language programs will often have to convert binary data into ASCII
or RAD50 form, and vice versa. (RAD50 is a special, tightly- packed data format used by some programs in the
operating system that formats three ASCII characters into two bytes, instead of the three bytes normally
required.)

As another example, if your programs are going to be reading or writing data on the disk, you will have to
include code that performs those operations, as well as file lookups and error detection.

Since the operating system already has routines that perform these kinds of functions, it would clearly be of
great help to programmers if they could take advantage of these routines in their own assembly language
programs. Many of these routines are, in fact, accessible to your programs.

AMOS contains over 70 operating system routines that your programs can use. They perform such widely
ranging functions as: displaying a user account specification in ASCII form; checking to see if a particular
disk file exists; fetching a line of data from a user terminal; and, performing a physical write operation to a disk.

You access these routines by including a monitor call in your assembly language program. (A monitor call is
the coding used by your program to access a particular routine that is embedded in the operating system.
These are also known as supervisor calls) For information on the operating system rf"'lutines you can use, refer
to the AMOS Monitor Calls Manual, (DWM-00100-42).

CHAPTER 12
INTRODUCTION TO JOBS

In some of our earlier discussions of AMOS, we talked as if you were the only person on the system, and as if
AMOS devoted its whole attention to your commands. Of course, you already know that a major advantage of
the AMOS system is that it is a "timesharing" operating system. That is, it handles more than one user on the
system at one time by sharing CPU time among users. Each user of the system has the illusion that he or she
is the only one talking to AMOS, even though AMOS is almost simultaneously communicating with several
other people. (In addition to being a timesharing system, we also say that AMOS is multi-user because it runs
more than one user, and multitasking because it allows one user to run more than one task at the same time.)

Although we talk about AMOS communicating with you, the user, of course the operating system has no way
of knowing who "you" are. Instead, the system initialization command file sets up the system to run a specific
number of jobs.

12.1 WHAT IS A JOB?

The idea of a "job" is a very important one on the AMOS system, but it's a little hard to define. A job is not the
same thing as a "user." Let's be fanciful for a moment, and compare a timesharing system to a carousel. The
operating system is the carousel operator that supervises the running of the carousel. The painted horses are
the system jobs, and the people riding the carousel are users. You might think of the horses as the way the
carousel operator has of keeping track of the riders and of connecting the riders to the carousel. When you
get on the carousel, you pick a horse and climb on. As far as the carousel operator is concerned, you then
become that horse. You can easily change horses, and then you become a different horse. Whether or not the
carousel has any riders, the same number of horses exist, and the carousel can only have as many riders at a
time as it has horses. If more potential riders exist than horses, some riders must wait until current riders get off
the carousel before they can get on. At any given time, any rider can be on any horse.

The system initialization command file defines a list of jobs that can be run on the system. Before a job can be
used, it must be associated with a terminal, so that the job can communicate with AMOS. The system initialization
command file usually attaches jobs to terminals. When you log into the system, you become the job that is
attached to the terminal you are using. If you log in on another terminal, you become the job attached to that
terminal. (Once logged in, you can re-attach your terminal to another job.) Once you log off the system, any
other user can use the terminal you were using and log in as the job attached to that terminal.

Jobs are therefore the mechanism that AMOS uses to connect you, the user, to the operating system. Although
jobs are generally used by human users, jobs can be set up to run the line printer spooler or other special
tasks, instead.

The operating system safeguards itself from unauthorized users by the use of accounts. (An account is a
structure on the disk that organizes the files on that disk.) To log into the system, you must enter a valid
account number. As an additional security measure, accounts may have passwords assigned to them which
you must enter to log into those accounts.

12-2 Introduction to Jobs

12.2 JOB SCHEDULING

The Exec contains the component of the operating system that handles jobs- the Job Scheduler. The Job
Scheduler allocates, controls, and schedules jobs on the system.

Each job that runs on the system has two components that are unique to that job: the Job Control Block (JCB)
and a memory partition. (A memory partition is the specific area of memory used by a job. We'll talk about
memory allocation and control in Chapter 14, "Memory Control and Management.") The Job Control Block is
an area allocated for each job within the operating system. Each JCB maintains specific information about its
job. When it runs a job, the Job Scheduler consults that job's JCB for information on the status of the job.

The Job Scheduler maintains a list of active jobs on the system, called the run queue. Each job in the queue
gets a specific amount of CPU time so that AMOS can process the job's requests for system resources. This
amount of time (called a quantum) is usually one-sixtieth of a second, or one tick of the real-time clock. You
can change the length of a job's quantum by using the JOBPRI command. We say that if you increase a job's
l'.luantum, you increase its priority.

When the quantum of a particular job is through, the Job Scheduler directs its attention to the next job in the
queue. When the Job Scheduler reaches the end of the run queue, it begins again at the front. With the single
minded dedication that is one of the most important features of a computer, as the Job Scheduler moves to
the next job in the queue, it quickly "remembers" where it left off during the last quantum of that job, and then
temporarily "forgets" about the rest of the jobs in the queue. It devotes itself entirely to the specific job it is
working on. The computer works so quickly that you are usually unaware that the operating system is handling
jobs other than your own.

If a job is in a wait state, that job is removed from the run queue until the job can run again. (The term wait state
describes the status of a job that is not ready to run because it is waiting for input or a system resource.) When
it is no longer in wait state, the job is placed back into the run queue. If no jobs are ready to run, the Job
Scheduler patiently waits until the run queue again contains an active job.

CHAPTER 1
COMMAND PROCESSIN(

To begin with, what is a "command"? A command is simply an order that you give to the computer that tells it
act in a specific way. Different computer systems handle commands in different ways. The most common We
of processing operating system commands is to use a command table. A command table is a special Ii
embedded in the operating system itself. This list contains the names of all of the legal system comman(
along with the addresses of the routines within the operating system that perform the functions requested t
the commands. When such an operating system receives a command from you, it compares it against i
command table. When it makes a match, it transfers control to the appropriate routine. The major disadvanta~
of this scheme is that the commands you can use are built into the operating system. That is, you cannot ac
new commands to the system without rewriting the operating system. Also, even if you do not use some of tt
commands, the routines that carry out those functions are still part of the operating system, taking up valuab
space in memory.

The AMOS system offers a unique approach to command handling. Instead of canning command routinE
into the operating system (and causing you to reassemble the operating system whenever you want to chan~
or delete a command), AMOS treats each command as the name of a program or command file. This giVE
your system optimum flexibility, since adding a new command consists merely of adding a new machir
language program or command file to the disk. (NOTE: We talk about command files and DO files below.)

This method of command processing allows you to write your own commands, rename old commands, ar
delete commands you don't want to use. Changing your system software to reflect the newest enhancemen
introduced by Alpha Micro becomes a simple matter of adding new Alpha Micro command routine files
your System Disk.

13.1 COMMAND AND DO FILES

You've seen the terms "command file" and "DO file" frequently in earlier chapters. Command file processir
significantly expands the range and power of the AMOS command language by allowing you to give AMOS
stream of commands and data by entering the specification of a single command file. (Those of you who a
familiar with large, mainframe systems might think of command files as a way of doing "batch processing.") .
perform all of the commands in a command file, just enter the name of the command file at AMOS com mar
level.

A command file contains ASCII characters. Each line of the file is a valid AMOS command line or a line
data. DO files are a type of command file that can contain special symbols for which you can substitu
arguments when you invoke the DO file. Command files can contain AMOS commands, specifications
other command files, and data for the specified programs to work on.

You may create your own command files by creating a text file with one of the system text editors. You mig
consider creating a command file to perform any series of commands that you enter frequently. For instance
you often back up files onto a backup disk, you might want to create a command file to do this function for yo
For example, the command file BACKUP.CMD looks like this:

13-2

:T
:< Command file to back up our working accounts onto DSK5:.
>

:< Make sure backup cartridge labeled BACKUPA is in disk drive.
Hit RETU RN when ready.> .
:K

; Make sure cartridge is mounted.
MOUNT DSK5:

; Log into System Operator's account [1 ,2] so we don't
; run into protection violations when we copy into accounts
; that are in projects we're not logged into.
LOG DSK5:[1,2]

; Copy files from one account into same account on DSK5:
; (the cartridge).
COPY =DSK1 :[20,1],DSK2:[40,1],DSK3:[50,1],DSK4:[]

:< Remember to put today's date on cartridge label.

All done ...
>

Figure 13-1
Sample Command File

Command Processing

The :T symbol above is a special symbol that must appear at the top of a command file if you want to see that
file as it is processed by AMOS. The semicolons denote comments within the command file. The Command
Processor ignores comments except to display them as it processes the command file if you have included
the :T at the front of the file. The [] symbol is a "wildcard" symbol. (A wildcard symbol is a single symbol that
can represent a range of elements. For instance, [] represents all accounts on a particular disk.) In the
example above, the [] symbol tells the COPY command to copy all accounts on DSK4: over to the cartridge,
DSK5:. The: K and :<> symbols are special command file elements that allow you to display messages to the
user of your command file and to ask for input.

We discuss command files in this chapter because it is the Command Processor that handles command files.
In fact, after the Command Processor loads a command file into memory, it processes the lines in that file
almost as if you were entering the lines from the terminal keyboard (except for the fact that your command files
and DO files can contain special symbols that you cannot enter from the keyboard). For detailed information
on using command files and DO files, refer to Chapter 8, "Command Files and DO Files," in the AMOS User's
Guide, (DWM-00100-35).

A special command file called the system initialization command file plays a very important part in the process
of system configuration and initialization. This file is on your System Disk in account [1 ,4] as SYSTEM.I N I.

We'll talk about SYSTEM.lNI in more detail in Chapter 17, "System Initialization and Startup." For now, just
remember that SYSTEM.INI is a very important command file that the Command Processor handles in a
special way at the time of system startup. The file defines the configuration of your system, and tells AMOS
what terminals, disks, special devices, and jobs you will be using on your system. The operating system
actually builds itself in sharable memory in response to the information in the system initialization command
file.

Command Processing 13-3

13.2 PROCESSING COMMANDS

When you enter a command at AMOS command level, the Exec accepts the command from the Terminal
Service System. Then the Exec transfers control to the Command Processor. The Command Processor sets
about looking for the program or command file that bears the same name as your command. (The search that
it makes follows a very well-defined pattern. See the next section of this chapter for a detailed discussion of
this search.) If the Command Processor cannot find the proper program or command file, the Exec lets you
know that no command routine was found: it echoes your command back to you, bracketed by question
marks. For example:

.PRIMPT [RET)

?PRIMPT?

If the Command Processor does find the correct program or command file (and if the module is not already in
sharable memory or in the area of memory you are using), the Command Processor loads a copy of it from the
disk into your area of memory. Then AMOS executes the program or processes the command file. When the
program or command file finishes, it exits, returning control to the Exec. The Exec then performs some general
cleanup functions which may include automatically deleting the program from memory and returning to AMOS
command level. (The Command Processor always deletes the module unless that module has been loaded
into memory via the LOAD command, or unless the module is a machine language program that itself orders
the Command Processor not to delete it.) Those commands that you are not using do not take up any room in
the memory used by the operating system or your area of memory.

13.2.1 The Command Processor Search List

The Command Processor follows a specific search procedure as it tries to identify your command. (Of course,
if you enter the full file specification of the command, telling AMOS the device, account, and name and
extension associated with the file, AMOS does not have to go through this search procedure.) Let's say you
enter a command called REMOVE:

.JiEMOVE [RET]

Let's follow the imaginary thoughts of the Command Processor as it searches for the proper program or
command file (remember that you are the "user"). Each numbered paragraph below details one step that the
Command Processor makes in its search. If a step is unsuccessful, the Command Processor goes on to the
next.

1. Is the memory module REMOVE.PRG in sharable memory or the user's area of memory?
(The .PRG extension identifies a machine language program; sharable memory is that area of
memory used by the operating system.)

2. Is the disk file REMOVE.PRG in the System Program Library Account, DSKO:[1,4]?

3. Perhaps the module is not a machine language program- for now, we'll assume that it is a
command file. Is the memory module REMOVECM D in sharable memory or the user's area of
memory? (The .CMD extension identifies a command file.)

4. Is the disk file REMOVECMD in the System Command File Library Account, DSKO:[2,2]?

5. Let's start looking for a .PRG file again. Is the disk file REMOVE.PRG in the account the user is
currently logged into?

6. Is the disk file REMOVECMD in the account the user is logged into?

13-4 Command Processing

7. Is the file a .PRG file in the user's library account? (The library account also known as the
project library account has the same project number as the account the user is logged into,
but has a programmer number of zero (e.g., [110,0]). The library account contains programs
and files that all users can share if their accounts are within that project.)

8. Is the file a .CMD file in the user's project library?

9. Well, the file does not appear to be a .PRG or a .CMD file. Now we load into memory the file
DSKO:MDO.PRG[1,4] which helps us search for DO files.

a. Is the disk file REMOVE.DO in the account the user is logged into?

b. Is the disk file REMOVE.DO in the user's project library account?

c. Is the disk file REMOVE.DO in the System Command File Library Account, DSKO:[2,2]?

10. If we still haven't found the disk file or module that corresponds to the command we are
processing, the user's input must have been in error. Echo the command back to the terminal,
bracketed by question marks to let the user know that we couldn't find the correct file or
module.

?REMOVE?

We can summarize the search list in this way:

1. Look for .PRG module in sharable memory.

2. Look for .PRG module in user memory.

3. Look for .PRG file in DSKO:[1,4].

4. Look for .CMD file in user memory.

5. Look for .CMD file in DSKO:[2,2].

6. Look for .PRG file in user account.

7. Look for .CMD file in user account.

8. Look for .PRG file in user's project library account.

9. Look for .CMD file in user's project library account.

10. Load in file DSKO:MDO.PRG[1,4]:

a. Look for .DO file in user account.

b. Look for .DO file in user library account.

c. Look for .00 file in DSKO:[2,2].

Now that you know how the Command Processor "thinks," you will know why, if you have several command
files or programs of the same name, the particular account you are logged into can affect which program or
command file AMOS selects to execute.

Command Processing 13-5

13.3 CHARACTERISTICS OF PROGRAMS ON THE AMOS SYSTEM

Remember that all commands invoke command files or machine language programs. Let's talk a minutE
about the programs that make up the command routines. All command files and machine language program~
originally exist on the disk as files. Most command routines are transient, that is, they exist on the disk, are
loaded into main memory only when needed, and then are automatically deleted from memory when executior
is finished. Such command routines can be made non-transient by loading them into memory with the LOA[
command. In that case, they remain in memory until explicitly deleted by a user.

All programs on the AMOS system are relocatable, That is, they will operate properly anywhere in memory
without being modified or reassembled. This is necessary because there is no way of knowing beforehanc
which memory locations a program will have to be loaded into, since all users on the system use a differen
area of memory. AMOS automatically takes care of making higher-level language programs and commanc
files relocatable for you.

Some machine language programs are also re-entrant. A re-entrant program is one that can be used by morE
than one user at one time. For example, BASIC can be invoked by one user, interrupted by another user whc
also makes full use of the program, and then re-entered at the point of interruption by the first user. Both userE
get correct results. Re-entrant programs are also known as sharable programs.

So that a re- entrant program can be used by more than one person, it must be loaded into sharable memor)
(the area of memory used by the operating system and resident system programs). The System Operator car
add programs to the Resident Program Area by modifying the system initialization command file. The obviou~
advantage to sharing programs is that each individual user does not have to load the program into his or hel
own area of memory, but can access the single copy of the program in sharable memory. The disadvantage tc
loading re-entrant programs into sharable memory is that this expands the size of this area of memory, anc
reduces the amount of memory available for individual users. If the System Operator loads a program into thE
Resident Program Area, that program MUST be re-entrant; the computer will exhibit strange and distressin~
behavior if several users are sharing, at the same time, a program that is not re-entrant. If you want to write reo
entrant programs, consult the AMOS Assembly Language Programmer's Reference Manual, (DWM-00100·
43), for hints on doing so.

CHAPTER 14
MEMORY CONTROL AND MANAGEMENT

When you see the term "memory" in this book, we are talking about the random-access memory that makes
up the temporary data storage on your computer system. (Remember that we discussed temporary storage
devices, permanent storage devices, and random-access memory in Chapter 2, "What is a Computer?".)
Although previous chapters have mentioned the importance of memory as a component of your computer
system, this chapter will go into some detail on how AMOS manages, controls, and allocates memory.

Before any program can be executed or data manipulated, the computer must transfer a copy of that program
or data from a permanent data storage device (that is, the disk) into memory, where the CPU can work on it.
(When we transfer a copy of a file from the disk into memory, we say that we have loaded that file into memory.)

Memory is the only form of storage that the CPU can work on directly. It differs from disk storage in that the
computer system can access it extremely quickly (in billionths of a second), and because memory offers only
temporary storage; when the power goes off, the contents of random-access memory disappear. Because of
these unique attributes, the computer uses memory as a work area- a scratch pad, in other words.

Each location in memory is consecutively numbered; that number forms a unique address by which a job or
the operating system can access a specific memory location. Memory addresses can run from 0 to 65535 on
the Alpha Micro computer system. This is because the CPU handles 16-bit numbers; the maximum number
you can represent in 16 bits is 65535. (NOTE: Although this would seem to limit us to a maximum of 64K
memory on a system (locations 0-65535), the AMOS system uses a memory management technique that
allows us to have multiple sets of 64K memory. See Section 14.3, "Memory Management," for a discussion of
this technique.) Memory locations near location 0 are known as low memory; locations near the other end of
memory are known as high memory.

When the operating system loads a copy of a program into memory, it does so by consecutively writing one
byte of data per memory location. The Memory Controller keeps track of which locations are available for use.
It also keeps track of the areas of memory used by specific jobs, and allocates memory for different uses.
Although these functions are important under any circumstances, they become even more significant on a
timesharing system, where different users are operating in different areas of memory at the same time. If some
entity were not managing memory resources, it would be impossible to keep the operating system and jobs
from bumping into each other throughout memory, writing over each other's data and programs. Because the
AMOS computer does not have memory mapping or memory protection built into the hardware, software must
keep track of what areas are in use, and what areas are available.

14.1 MEMORY MAP

The pattern in which memory is distributed to the various jobs on the system and to the operating system itself,
is often known as the memory map of that computer system. The memory map of your system changes every
time you change memory allocations.

When the system starts up, AMOS writes itself into memory, beginning with location O. The amount of memory
taken up by AMOS depends on your particular system and the particular devices connected to that system.

14-2 Memory Control and Management

The remaining memory is available for user jobs except for the top 256 bytes of memory, which are used as
the I/O ports. (You can see, then, that our earlier assertion that memory addresses can run from 0 to 65535 is
not strictly true. Because the top 256 bytes are the I/O ports, memory addresses really run from 0 to 65279.)

14.1.1 Memory Partitions

Each job has its own area of memory, called a memory partition or user partition. The memory partition
allocated to a specific job may be anywhere in memory, depending on what memory was available when that
partition was assigned. A typical memory map for a 64K system might look something like this:

(Location 0) (Location 65279)

First 16K 16K 16K 12K 4K

Resident Line

AMOS Program JOB#1 JOB #2 JOB #3 Printer

Area Spooler
Job

Sharable Memory User Memor y

Figure 14·1
Typical Memory Map for a 64K system

The diagram above shows a system that uses the first 16 K for the operating system and for resident programs.
This 16K is called sharable or system memory, because all users on the system can access it. All users can
access programs that are in the Resident Program Area without loading those programs into their own mem
ory partitions. In addition, besides saving room in individual user partitions, putting programs in the Resident
Program Area allows users to access those programs faster. This is because the programs do not have to be
loaded into memory before they are used. Placing programs into the Resident Program Area is therefore a
good idea if you have the room in sharable memory to do so, and if those programs are used frequently by
most of the users on the system. (Placing a program into the Resident Program Area is done by the System
Operator, who does so by modifying the system initialization command file.) NOTE: Any program loaded into
the Resident Program Area MUST be re-entrant. (See our discussion of re-entrant programs in Section 13.4,
"Characteristics of Programs on the AMOS System.")

The rest of the memory, called user memory, is nonsharable memory, and is devoted to user jobs. Our sample
system has divided up the remaining memory into user partitions of 16K, 16K, 12K, and 4K.

The total amount of memory used in our sample system adds up to 64K (minus 256 bytes at the top of
memory, which are used as the I/O ports and cannot be allocated to user partitions). Note that memory
locations range from 0 to 65279. Each partition must contain contiguous memory locations. For example, all
the memory locations that appear in JOB #1 's memory partition must be consecutively numbered, with no
gaps in those numbers.

Notice that the last 4K partition is set aside for a special job that is used by the line printer spooler program.
The line printer spooler is a special program that allows your job to perform two tasks at once: printing a file
while you are running a program in your partition. (The use of the spooler program is an example of multi
tasking; or, one user performing two or more tasks at the same time). What actually happens is that your job
communicates with the line printer spooler job. Then the line printer spooler program allows you to place the

Memory Control and Management 14-3

name of the file you war' ~o print in a printer request queue until the printer can get to it. (A queue is a waitin~
line.) A spooler, in a more general sense, is any program that enters (or "spools") items into a queue. (NOTE:
Systems programmers may be interested in more information on the monitor queue system. See Chapter 5
"Monitor Queue System Calls," in the AMOS Monitor Calls Manual, (DWM-00100-42).)

14.1.2 Memory Modules

The contents of a memory partition may be divided up into groups called memory modules. Once you load c
disk file into memory, that copy of the file becomes a memory module. The kinds of disk files you can load intc
memory are: programs, command files, and data. You can reference a memory module by giving the specific
ation of its original disk file. For example, if you load the disk file HWK1 :STDMOD.PRG[1 00,2] into memory, thE
copy of the file in memory becomes memory module STDMOD.PRG. Modules are built within a partitior
upward from the beginning of the partition as long as there is available space. As modules are deleted fron
memory, all modules above them in the partition are automatically shifted downward to fill up space left by thE
deleted module. When any module changes size, modules above it are shifted accordingly. This ensures tha
all available memory is always at the top of your partition. AMOS processes command files by loading then
into the upper part of your partition and processing them there. For more information on the format of c
memory module, see Chapter 3, "Memory Control System Calls," in the AMOS Monitor Calls Manual, (DWM
00100-42).

High Memory
Command File (if used)

Free Memory Area
(available to this job only)

MODULE 1 - Machine Language
Program, CREATE.PRG

MODULE 2 - Machine Language
Debugger Program, DDT.PRG

Low Memory

Figure 14-2
Memory Map of a 1\'pical User Partition

The diagram above shows the arrangement of modules in a typical user partition. Note that command files
always are processed and executed at the top of the partition. Other modules are loaded in from the base of
the partition up through the available memory area. When AMOS tells you:

? Memory map destroyed

it means that AMOS has lost track of the positions of the modules in your partition. If you continue to receive
this message, you must reboot the system when convenient, or switch to another terminal and job, since
AMOS's map of your partition has been destroyed beyond recovery.

14-4 Memory Control and Management

14.2 MEMORY MANAGEMENT

Figure 14-1, "Typical Memory Map for a 64K System," gives a sample memory allocation scheme for a system
with a total of 64K of memory. Notice that the largest user partition on this sample system is 16K. Although that
is sufficient for some applications, jobs that do a great deal of program development or text preparation,
usually require a larger memory partition. To make the partitions larger on our sample system, the System
Operator must either reduce the size of the Resident Program Area or reduce the number of jobs on the
system. Either solution presents problems of its own.

Because it is difficult to run many users on the system at the same time in 64K of memory, the Alpha Micro
system uses an optional memory control technique called memory management to allow your computer to
access more than 64 K of memory.

Remember that the largest memory address we can form with a 16-bit CPU is 65535. The only way, then, we
can have more than 64K of memory is to allow separate memory locations to have the same addresses. We
differentiate between memory locations that have the same addresses by setting memory up into banks.
Each bank may contain up to 64K of memory. The banks on the system are numbered consecutively begin
ning with number zero. You can have as many banks as you want; the limit depends only upon the amount of
memory you can physically place in your computer chassis. One system can thus have over one million bytes
of memory. Each bank cannot exceed 64K, however, and each job cannot use more than one bank.

In essence, we "fool" the CPU into thinking that there is only64K of memory on the system by turning "on" the
bank of memory used by the job currently being processed, and turning "off" those banks used by other jobs.
This process is called bank switching. At anyone time, therefore, the CPU thinks that it is accessing a
maximum of64K. AMOS, however, knows which bank of memory should be active at anyone time and which
banks should be inactive. These banks of memory (because they are "swapped" or "switched") are called
switchable memory.

Non-switchable memory is the area of memory we have been calling sharable memory. Sharable memory is
used by all jobs on the system, since it contains the operating system and any resident programs. Since
sharable memory is accessed by whatever job is currently being handled by the Job Scheduler, sharable
memory is never turned "off"; it is always active. In fact, sharable memory is considered to be part of the
maximum 64 K of memory that can be active at anyone time. Because of this, the actual size of each bank can
never be more than 64K minus the size of sharable memory. Therefore, if sharable memory must take up 16K,
each bank must never be larger than 48K. (In other words, sharable memory plus the currently active bank
equals the total amount of memory active at anyone time.)

To make these concepts clearer, let's assume that we have a system that has three 64K memory boards, for a
total of 192K of memory. We will dedicate 16K to sharable memory and divide the rest among four banks. Our
memory configuration might look something like this:

Memory Control and Management 14-5

Non-switchable Memory Switchable Memory

Sharable Memory

16K BANK ZERO

48K

BANK ONE

48K

BANK TWO

48K

BANKTHREE

32K

Figure 14-3
Bank Switching Memory

If you are interested in how the three physical64K memory boards make up four banks, this is how we do it:

The first memory board makes up the 16 K sharable memory and the first switchable 48 K bank. The
second memory board makes up the second 48K bank and the first 16K of the third bank. The third
memory board makes up the last 32 K of the third bank, and this board also makes up the last bank,
which contains only 32 K.

You can see, then, that memory banks are a logical grouping of memory, not a physical one. That is,
one bank may consist of memory from more than one physical memory board. In our example,
th ree 64 K memory boards 192 K of memory) make up 16 K of sharable memory and 176 K of switch
able memory.

Of course, unless you are actually setting up the memory used on your system, the memory management
AMOS performs is not something you have to be aware of. When your job is active, the memory your job uses
is active too, and it appears to you that you are the only user on the system. Memory management offers a
certain amount of memory protection, since it is very difficult for one job to get to a bank of memory outside of
its own.

To tell AMOS that you want the system to bank switch memory, the System Operator must modify the system
initialization command file to include the proper instructions. For information on setting up memory manag&
ment, refer to the "System Operator's Information" section of the AM-100 documentation packet.

14-6 Memory Control and Management

14.3 MEMORY ALLOCATION

Whether a system bank switches memory or uses only 64K of memory, the System Operator must assign
memory partitions. Until user partitions are allocated, all memory past the operating system remains available
but unused. Even once memory banks are set up (see the discussion of memory management above), the
memory in those banks does not become useful until it is assigned to jobs. Several jobs may share one
memory bank but no single job may use more than one bank. All memory locations within a single user
partition must be contiguous (that is, the addresses of the locations must be consecutive, with no gaps).

On a system that uses memory management, you use the JOBMEM command to allocate memory to job
partitions. This command requires that you give both the number of the bank that job is going to use, and the
addresses (in octal) of the first and last memory locations used by the partition. The system initialization
command file usually contains JOBMEMs that perform the initial memory allocations for jobs, but once the
system is up and running you can also change those allocations by using the JOBMEM command.

If your system is not a bank-switched system, use the MEMORY command to allocate memory to jobs. You do
not assign actual memory locations, but simply amounts of memory. AMOS allocates the amount you desire
beginning with the first available memory area. The initial memory allocations are usually done from within the
system initialization command file. Once the system is up and running, you can change memory allocations
(again, by using the MEMORY command). Re-allocating can become a bit tricky if several users are on the
system.

14.3.1 Re-Allocating Memory

On occasion, it becomes necessary to change the size or the location of user partitions. For example, one job
may want to run a program that requires more memory than is allocated to that job's current partition. At the
same time, another job may not need all of its allocated memory. AMOS allows you to change the allocations
of memory while the system is up and running. Naturally, jobs must not be executing programs or command
files while someone is changing the memory locations in which those jobs operate.

The methods for doing re- allocation of memory differ, depending on whether or not your system uses memory
management. Systems that use memory management use the JOBMEM command to re-allocate user part
itions. One job may perform all of the re-allocations necessary by using a series of JOBMEM commands.

Systems that do not bank switch memory use the MEMORY command to re-allocate memory. Usually all jobs
on the system cooperate together to shrink and expand their own partitions until the desired configuration is
achieved. (However, by using FORCE commands, one job may enter the necessary series of MEMORY com
mands- e.g., FORCE JOB2 MEMORY 0.)

When you re-allocate user partitions, you actually change the size and locations of those partitions in mem
ory. Otten, changing one partition requires that you change the locations of other partitions as well.

To make clearer the idea of changing the locations of user partitions in memory, we'll step through a simple
example. The sample below applies to systems that do not bank switch memory. Let's say that your memory is
currently being used in this way:

16K 16K 16K 16K
(Operating System) (JOB1) (JOB2) (unused)

Low Memory High Memory

Figure 14·4A
Sample Memory Configuration

Memory Control and Management 14-

We have 16K of memory available. If we want to expand JOB2's partition, we can simply use the MEMOR
command to tell AMOS to include the top 16K of memory in JOB2's current partition. This gives JOB2 32K I
contiguous memory locations.

Expanding JOB1's partition is a little more complicated. Remember that all memory in a partition must t
contiguous. Which means that, as matters stand, JOB1 cannot access the unused 16K because JOB2
partition is in the way. The onlywaythatJOB1 can make its partition larger is to expand into JOB2's area. Tod
this requires a little cooperation from JOB2. First, JOB2 must use the MEMORY command to free up all of t~
memory in its partition for the use of JOB1. To do this, JOB2 enters:

~MEMORYO [RET)

To free up all of the memory in its partition, JOB2 must enter a zero to the MEMORY command; a non-zer
number (no matter how small) will leave some amount of memory assigned to the partition, and will lea\
JOB2's partition standing in the way of JOB1's access of the unused 16K of memory that is at the high end I
memory.

JOB1 now has all memory from its own partition up to the end of memory (excluding, of course, the top 25
bytes for the I/O ports) available for its use. It uses the MEMORY command to expand its partition. To get
partition that contains a total of 32 K of memory, JOB1 enters:

.:.MEMORY 32 K [RET)

Now JOB1 has the first 32K of memory past the operating system. We've now expanded JOB1's partition i
memory, and must now re-allocate memory to JOB2. JOB2 now enters:

.:.MEMORY 16K [RET)

AMOS allocates the last 16K of memory to JOB2's partition. We've now sucessfully moved the partitior
belonging to JOB1 and JOB2. Our final memory configuration looks like this:

16K 32K 16K

(Operating System) (JOB1) (JOB2)

Low Memory High Memory

Figure 14-48
Memory Configuration After Re-allocation

IMPORTANT NOTE: One reason why JOB2 has to use the MEMORY 0 command is that its partition woul
otherwise stand in JOB1's way. Another important reason is that when a job attempts to perform a task and
has no partition at all (that is, no memory is assigned to it), AMOS attempts to allocate to it any memo!
available to that job. Therefore, if you allocate a zero amount of memory to a job, the next time that job tries t
do something, AMOS will give it all the memory it can. (You can see that in the case above of re-allocatin
memory to JOB2, we didn't really have to use the MEMORY 16K command; AMOS would automatically ha~
allocated the top 16K of memory to JOB2 when JOB2 next tried to run a command program.)

CHAPTER 15
TERMINAL HANDLING

The Terminal Service System (TRMSER) is the portion of AMOS that makes possible the communication
between terminals and software on the system. (We've already talked about terminals in Chapter 11, "General
Structure." Briefly stated, a terminal is a character-oriented device that allows both input and output. The
terminal is the device that allows you to communicate with the computer system.)

TRMSER is a general terminal processing routine that allows your programs (as well as the programs that
make up AMOS itselij to communicate with terminals connected to the system. Those programs are thus not
required to know what kinds of terminals or interface boards must actually be physically accessed. It acts as a
kind of clearing house for data, making input from the terminals accessible to AMOS and your programs, and
transferring output from AMOS to the terminals.

Think of TRMSER as a switchboard operator. You can tell the switchboard operator that you want to talk to
Ms. Jones; the operator then worries about which office Ms. Jones occupies and what line to use to make the
call. Your call may be routed through a complicated maze of equipment, but you need do nothing more than
contact the switchboard operator. In the same way, programs talk to terminals by going through TRMSER.

TRMSER takes care of such general functions as: retrieving your terminal input and placing it in a memory
buffer so that other portions of the operating system can access that input; funneling operating system output
to your terminal; and echoing characters on your terminal display.

15.1 DRIVER PROGRAMS

Different kinds of terminals handle input and output differently. For example, the same code sequence may
cause two different terminals to perform radically different screen display options. We need a mechanism for
translating TRMSER's commands into a form recognized by a specific terminal. We also need a way to
transfer data from the terminal to the particular interface board to which it is connected. (Interface boards are
the hardware that physically connect the terminal to the computer system, and provide a physical pathway for
data to flow between the terminal and the system. Several terminals may be connected to the same interface
board, and you may have more than one type of interface board in your system. Different interface boards
handle input and output differently.)

So, we need software that allows the Terminal Service System to communiate with a specific terminal and a
specific interface board. The programs that allow it to do so are called terminal drivers and interface drivers.
These driver programs take data from TRMSER and translate it into the form required by the hardware; then
they route the data to the terminal through the interface board.

Terminal and interface drivers are two types of drivers; a driver is a program that allows the system to com
municate with an va device connected to the system, such as a disk, magnetic tape unit, terminal, printer, or
paper tape reader.

15-2 Terminal Handling

15.1.1 Terminal Drivers

The terminal driver processes all input and output characters, and determines whether or not these characters
need special handling because of the special characteristics of the terminal. For example, most eRT terminals
have the ability to back up and erase a character on the screen when we type a RUBOUT; a hard copy
terminal, on the other hand, can only print forward, and therefore responds to a RUBOUT by echoing the
deleted characters on the printed display.

Because different kinds of terminals have different characteristics, most kinds of terminals require their own
terminal driver programs. For example, a terminal driver for a SOROe 120 terminal may not work for a
BEEHIVE 100 terminal. When you add a new kind of terminal to your system, you will probably also have to
add a new terminal driver for that device. (NOTE: It is sometimes possible to use one terminal driver for
several different kinds of terminals; check with your System Operator for advice on this subject.)

Most terminal drivers are written to handle actual hardware devices. Some special cases, however, may not
require that a job be physically connected to a terminal (for example, when you want to discard output charac
ters or effect inter- job communication without use of a terminal). For these situations, where you do not use an
actual terminal, AMOS allows you to define pseudo terminals. Two pseudo terminal drivers are included
within AMOS and are called PSEUDO and NULL. They are used in conjunction with the PSEUDO interface
driver. A good example of a job using a pseudo terminal is the job that runs the line printer spooler. The line
printer spooler does not use an actual hardware terminal for job input or output.

Terminal drivers are files with .TDV extensions. They appear on your System Disk in account [1 ,6). For example,
the file DSKO:SOROe.DVR[1 ,6) is the terminal driver for the SOROe terminal. (PSEDUO and NULL are not.TDV
disk files, but actually exist as part of AMOS.)

15.1.2 Interface Drivers

The interface driver is the program that transfers characters back and forth between the terminal and the
hardware interface board that the terminal is connected to. Interface drivers are usually quite small programs.
They perform any necessary initialization of the interface boards and set up interrupt processes if used by the
boards.

I nterface drivers are files on the System Disk in account [1 ,6) that have the extension .1 DV. A special interface
driver called PSEUDO is for use with the pseudo terminal drivers NULL and PSEUDO, and defines a pseudo
interface for inter-job communication and control. (The PSEUDO interface driver is not a .IDV disk file, but is
actually part of AMOS.)

15.2 HOW TRMSER WORKS

The Terminal Service System works with the terminal and interface drivers to provide a generalized way of
getting information to and from terminals.

At the time of system initialization, AMOS builds a terminal definition block within sharable memory for each
terminal. (AMOS consults the TRMDEF commands in the system initialization command file when building
these units. The TRMDEF commands contain information on each terminal connected to the system.)

The terminal definition block maintains information about the terminal (e.g., what interface that terminal is
connected to, what terminal driver that terminal uses, status of that terminal, and so on). AMOS then loads
into sharable memory the correct terminal driver program and interface driver program for each terminal

Terminal Handling 15-3

(unless these programs dre already in sharable memory), and then executes the interface driver, which per
forms any necessary interface initialization.

TRMSER consults a terminal's definition block when transferring data between AMOS and that terminal.
(Whn a terminal becomes attached to a job, the terminal definition block becomes linked to that job's Job
Control Block. A terminal is said to be "detached" if it is not linked to a JCB.)

The most important function TRMSER performs is the input and output of characters. Terminal service systms
are notoriously convoluted and involved. Just to give you an idea of what goes on when TRMSER is at work,
we give some very simplified diagrams below. Remember, however, that the reality is somewhat more com
plicated than our simplifications. For more information on the Terminal Service System, see Chapter 7,
"Terminal Service System," in the AMOS Monitor Calls Manual, (DWM-00100-42).

15.2.1 Inputting Characters

When you enter a character on your terminal keyboard, the character is routed through a complex network of
processors. The process looks something like this:

. Storage Buffer ...
Terminal Service System

(TRMICP Routine) _. . Echo/Output Routines

f
1 ~ I

Terminal .. Interface • Interface Terminal
Keyboard ... Board ... Driver Driver

Figure 15·1
Inputting a Character through TRMSER

What actually happens is this:

1. The character is physically transferred from the terminal to the interface board by the interface
hardware.

2. The character is then accepted by the interface driver program which passes it to TRMSER.

3. TRMSER sends the character to the terminal driver which does any character conversion
needed.

4. The terminal driver sends the character back to TRMSER.

15-4 Terminal Handling

5. TRMSER puts the character into a buffer (unless it is to be acted upon immediately- e.g., a
Control-C) so that some other portion of the operating system (or your program) can read the
character. At this point, TRMSER echoes the character unless the terminal driver has already
done so. (See Section 15.2.2., "Outputting Characters," for information on echoing characters
and on the output routine.)

15.2.2 Outputting Characters

Terminal output characters come from TRMSER either as input characters to be echoed or as output from
AMOS or your programs. Each character goes from TRMSER to the terminal driver so that the driver can
perform any necessary conversions. We've simplified the process somewhat, but outputting goes something
like this:

Storage .. Terminal Service System
Buffer

...
(TRMOCP Routine)

IT
~ I ,.

Terminal Interface .. Interface .. Terminal
Driver Driver ... Board .. Display

Figure1S·2
Outputting or Echoing a Character Through TRMSER

What happens is this:

1. When there is room and time to output or echo another character, the interface driver asks
TRMSER for an output character.

2. TRMSER sends the character from the storage buffer to the terminal driver, which performs
any necessary conversions. (For example, for timing purposes, some printing terminals require
that the operating system send a special sequence of nulls after every line-feed.)

3. The terminal driver processes the character and sends it back to TRMSER for position pre
cessing. (For example, if we are trying to output a TAB, TRMSER has to calculate how many
characters were output since the last tab stop on the screen so that TRMSER will know how
many spaces to output for the TAB character.)

4. TRMSER then passes the output character (or converted character) directly to the interface
driver.

5. The interface driver sends the character to the interface board, and thus to the terminal display.

Terminal Handling 15-5

Let's digress for a moment and talk about how your terminal echoes characters. (The next two paragraphs are
especially for those of you who have always wondered why the FULL DUPLEX/HALF DUPLEX switch exists on
your terminal.)

When a terminal is being used to communicate with the computer system, the characters that you enter on the
keyboard are not automatically displayed by that terminal; instead, they are first processed by AMOS and then
"echoed" (or repeated back) to the terminal display byTRMSER. This process is so fast that you are unaware
of any delay between typing a character and seeing it on your terminal display. This mode (in which the
computer echoes characters that it receives from a device back to that device) is called full duplex mode.

Full duplex mode is the usual way data is transferred between the terminal and the computer. In half duplex
mode, the terminal itself echoes characters back before the computer can receive and translate those charac
ters. In this case, both the computer AND the terminal are echoing characters back to your terminal display,
and you see two of each character that you type. This problem arises because your terminal is operating in
half duplex mode, but the computer is operating in full duplex mode. Make sure that the switch on your
terminal is turned to the FULL DUPLEX or FULL setting so that the computer and your terminal operate in
harmony. (NOTE: Terminal drivers can be written to control terminals that only operate in half duplex.)

CHAPTER1E
HOW AMOS HANDLES DEVICES

This chapter introduces you to the portions of AMOS that handle devices. A device is any hardware unit tha
inputs or outputs data to the computer system. Devices are also known as peripherals, and include such unit~
as disk drives, paper tape punches, printers, terminals, and magnetic tape transports.

One of the most valuable services that an operating system performs for you is to provide logical I/O routine~
that allow your programs to deal with devices on a "logical" rather than a "physical" basis. That is, you
programs may want to access information on a disk without knowing anything about the physical attributes a
that device. Logical I/O routines allow you to designate the data that you want to access by specifying thE
logical grouping in which that data appears (e.g., a file). AMOS then figures out the physical address of thE
device that the system must access to retrieve the data you want.

The two major portions of AMOS that handle data input and output are the Terminal Service System (SE1E
Chapter 15, "Terminal Handling") and the File Service System. These two sets of programs give your compute
system a powerful flexibility by making it "device independent." That is, upon adding a new device such as c
new type of terminal or disk drive, you need only add a new machine language program (called a driver) tha
interfaces that device to the Terminal or File Service Systems. The operating system itself does not change t(
reflect the changes in your hardware, nor do you need to change your programs that access the devices or
your system.

The Terminal Service System handles devices such as terminals and some printers. (To handle a printe
through TRMSER, that printer must be defined as a terminal rather than as a general device and must bE
connected to an interface board. Also, a terminal driver and an interface driver must exist that can control tha
printer.)

The File Service System handles communication with non-terminal devices such as disks, magnetic tapE
units, and some printers. (To handle a printer through FI LSER, that printer must be defined as a general systen
device and be connected to its own interface board. We must also have a device driver program that controll
the pri nter.)

Let's talk a moment about why we define some printers as general devices, and some printers as terminals:

We usually define serial printers as terminals because we can connect them to a terminal interface
board (e.g., the AM-310), which makes them easier to interface to the system. We usually define
parallel printers as general devices (thus requiring a device driver program rather than a terminal
driver program for that printer) because such a printer requires its own hardware interface board.

(A serial printer is one that outputs data serially- one bit at a time; a parallel printer outputs data in
parallel- eight bits at a time. Parallel printers are usually faster than serial printers.)

16.1 THE FILE SERVICE SYSTEM

Some devices input and output data in a stream of sequential characters (for example, a paper tape reader)
these devices are called non-file structured devices. Other devices contain data that is organized into comple:
structures called files. (See Chapter 5, "Introduction to Files," for information on files.)

16-2 How AMOS Handles Devices

The File Service System (FILSER) allows access of devices that maintain files (e.g., disk drives) and those that
do not(e.g., magnetic tape unit). When FILSER has to communicate with a file-structured device, it does so by
going through the Disk Service System (DSKSER). (We talk about DSKSER in Section 16.2, "The Disk Service
System," below.)

FILSER and DSKSER work through special programs called device drivers. A device driver is a machine
language program that allows the system to communicate with a specific I/O device connected to the system.
They differ from terminal and interface drivers in that they perform very general, all-purpose I/O functions.
(Terminal and interface drivers are highly optimized forms of device drivers that perform very specialized
tasks.) Device drivers are files with one- to three-character names and the extension .DVR. They appear on
your System Disk in account [1 ,6).

At the time of system initialization, the system initialization command file defines the devices that your system
will be using. In response to the DEVTSL commands in the system initialization command file, AMOS builds
within sharable memory a special structure called the device table. The device table tells AMOS what device
driver programs will have to be used when accessing the devices on the system, and how many units (e.g.,
drives) each device contains. The device table also points to the bitmaps associated with disk devices.

When your job requests that AMOS perform I/O to a device, AMOS calls on FILS!;R, which accesses the
proper device driver for the device you want to use. FI LSER controls the device access by referring to the
device table to make device assignments, and to a special unit in memory called the Dataset Driver Block
(DDB).

The program you are running sets up DOSs so that your program can pass information to FILSER; the DDS
contains defining parameters such as device name, drive number, filename and extension, project
programmer number, buffer address, etc. One separate DDS exists for each file or device that is currently in
use.

You might picture FILSER's interaction with devices and device drivers in this way:

Non-file Structured • Device .. Misc. Device .. Driver ... (e.g., Magnetic Tape Unit)
File Structured

File Service System ~
Device Hard Disk Drive

(FILSER)
.. Driver ...

Disk Service
System

(DSKSER) .. Device -- Floppy Disk Drive ... Driver ..

Figure 16-1
File Service System and Disk Service System

FILSER makes its decision whether or not to go through DSKSER based on characteristics of the device
driver referenced in the device table. (That is, if the device is file structured, FILSER goes through DSKSER;
otherwise, FILSER goes directly through a device driver.)

How AMOS Handles Devices 16-3

16.1.1 Special Device Drivers

The device table that you define at the time of system initialization contains the names of the devices you will
be using on your system. The names of the devices are the same as the names of the device driver programs
that will be used to access those devices. AMOS thus knows which device driver to use for which device. Most
of these device names identify actual hardware devices such as disk drives or magnetic tape transports.
Three special device names that do not identify actual devices should also appear in your device table; they
are MEM, RES and TRM.

The drivers MEM.OVR, RES.OVR, and TRM.DVR are generalized device drivers that allow you to use as
devices several units that normally would be handled by portions of AMOS other than FILSER.

• MEM.DVR allows you to access your memory partition as just another device. For example,
the 01 R command allows you to see what files exist in a disk account. Normally when you use
OIR, you specify the disk on which the account occurs (e.g., OIR OSKO:*.*[1,6D. MEM.DVR
allows you to reference memory as a device. For example:

.DIR MEM:*.* (RET)

The command above tells 01 R to give you information about all files (that is, all memory
modules) in your own memory partition.

• RES.OVR allows you to access the Resident Program Area as a device. For example, you can
reference RES: to the OIR command:

~DI R RES:*.* (RET)

to find out what memory modules exist in the Resident Program Area.

• TRM.DVR allows you to access terminals as general devices. FILSER can access any terminal
as though it were a device by using the TRM driver.

For example, the COPY command allows you to copy data between devices (e.g., COPY
OSK1 :=OSK2:VUE.MAC). You can use TRM.DVR to send the output to a terminal rather than
to another disk device. For example:

~COPYTRM:TERM6=OSK2:VUE.MAC [RET]

(NOTE: The name following the TRM specification, TERM6, is the name of the terminal we
are trying to copy data to. The terminal name is assigned at the time of system initialization by
the TRMOEF commands in the system initialization command file.)

Please note that there are some limitations placed on the use of special devices. For example, although you
can use RES.OVR to find out what modules are in the Resident Program Area, you cannot use it with the COPY
command to copy modules into the Resident Program Area. For more information on these special devices
and device drivers, see The System Initialization Command File, (DWM-00100-09), in the "System Operator's
Information" section of the AM-100 documentation packet.

16.2 DISK SERVICE SYSTEM

Without the benefit of a Disk Service System, any time your machine language program needed to access a
disk, it would be necessary for you to create your own routines to perform file operations. OSKSER keeps track

16-4 How AMOS Handles Devices

of files, block links, and block counts, so that your program doesn't have to. When your program wants to read
or write a particular logical record in a file, DSKSER translates that request so that AMOS gives you the proper
physical location on the disk. DSKSER also takes care of renaming files, deleting files, and performing file
lookups for other portions of the operating system (or your programs).

As we mentioned in Chapter 6, "Permanent Data Storage," disks are physically structured into concentric
rings called tracks. Those tracks are further divided up into sectors.

Each sector contains a specific number of bytes of data. We call a sector a disk physical record, since it is an
actual, physical grouping of data on the disk (as opposed to a logical record, in which data is grouped without
regard to the physical attributes of the disk).

The particular pattern in which the data on the disk is written is called the format of that disk. Disk formats vary,
depending on the type of disk drive. (For information on disk formats, see Disk Drivers and Formats, (DWM-
00100-32), in the "System Operator's Information" section of the AM-100 documentation packet.) No matter
what format is used by a particular disk drive, AMOS almost always reads and writes data in a group of 512
bytes. We call this 512-byte group a disk block. (The exception to this 512-byte block size occurs in the
special case of the IMG: device driver. You use IMG: to access data on special devices in blocks of128 or256
bytes.)

Most hard disks available for use on your AMOS system also have sector sizes of 512 bytes. So, for hard disk
systems, disk blocks are the same size as disk physical records. Your programs only concern themselves with
logical records. (Although AMOS itself uses a disk block of 512 bytes, your BASIC programs, for example,
might define data files that use logical records that are smaller than 512 bytes.) The Disk Service System
translates your program requests for logical records into requests for the actual disk blocks used by those
logical records. Your programs therefore do not have to keep track of how sequential file blocks are linked
together, or how disk blocks map into the physical records on the disk.

16.2.1 Disk Structure

AMOS organizes every disk into the same basic structure. This section discusses briefly how AMOS organizes
data on the disk, but for detailed information on disk structure, see Appendix A, "Disk Structure Format," in the
AMOS Monitor Calls Manual, (DWM-00100-42).

The first block on the disk (block 0) is the disk I.D. block. Alpha Micro uses this disk block to maintain
permanent identification information about the disk.

The next block (block 1) is the Master File Directory (MFD). We will talk about the MFD in the paragraphs
below.

Beginning at block 2 is the disk bitmap. A bitmap is the structure AMOS uses to keep track of which blocks on
the disk are in use, and which are available. The bitmap contaihs one bit for each block on the disk. If a block
is in use, the bit in the bitmap that represents that disk block is a 1; if the block is available for use, its bit in the
bitmap is a O. The bitmap is permanently stored on the disk beginning with block 2 and extending as far as
necessary. The last two words in the bitmap form a hash total. (A hash total is a special value that is computed
based on the characteristics of a group of data. The hash total is used to check the integrity of a group of data
or to uniquely identify that data.) Every time AMOS accesses the bitmap, it re-computes the hash total (by
adding up all of the bits in the bitmap); if the new hash total and the old hash total are not the same, AMOS
knows that some data in the bitmap has inadvertently been destroyed. It then gives you the error message:

?Bitmap kaput

You must then reconstruct the disk bitmap by running the disk analysis program, DSKANA.

How AMOS Handles Devices 16-5

Whenever AMOS attemrts to write data to the disk, it:

1. Finds in memory (or loads into memory, if the proper bitmap is not already there) a copy of the
bitmap of the disk it wants to access.

2. Computes the hash total of the bitmap and checks it against the old hash total.

3. Consults the bitmap to see what disk block is free for it to write into.

4. Changes the bitmap to show that the block is now in use.

5. Re- computes the bitmap hash total to reflect the modified bitmap.

6. Writes the modified bitmap back out to the disk.

7. Writes the data into the chosen disk block.

Whenever you change the disk in a drive (that is, when you change a floppy disk or change a hard dis~
cartridge), you must mount the new disk by using the MOUNT command. If you do not, AMOS has no way 0

knowing that the bitmap it may have in memory for that disk is no longer valid. Forgetting to mount a disk car
cause AMOS to use the wrong bitmap when allocating blocks on that disk, which can destroy the data on yoU!
disk.

16.2.1.1 Account Structure- You already know that all files are organized into accounts. To make use 0
the AMOS system, you must log into a specific disk account. (Each account has a number called a project·
programmer number (PPN) associated with it. To identify a specific account when you log onto the system
you supply the LOG command with the PPN of the account you want to use.) To allocate accounts on the dis~
(or to optionally assign passwords to those accounts), the System Operator uses the SYSACT command.

Of course, AMOS does not physically organize the disk area into accounts. That is, each account does no
have a certain disk area for its files. I nstead, AMOS keeps track of what files belong to which account b~
maintaining an account structure on the disk. This structure consists of a Master File Directory, various Usel
File Directories, and the files themselves.

Block 1 (the block before the bitmap) is always the Master File Directory (MFD). Each disk contains one MFD
The MFD is one block long, and contains one entry of four words for each user account allocated on that disk
(Since the MFD is only one block long, each disk can thus have a maximum of 63 user accounts.)

Each entry in the MFD identifies a specific account directory. (Individual account directories are known a~
User File Directories, or UFOS.) The entry contains: the account project-programmer number; the number 0

the first disk block used by the UFO; and, the password (if assigned) of that account. The MFD, therefore
contains one entry for every UFO on the disk. The SYSACT command allows the System Operator to add
delete, and change MFD entries.

One User File Directory exists for each user account; it contains one entry for each file in that account. The
UFO entry contains: the name and extension of the file; the number of blocks in the file; the number of active
data bytes in the last block of the file (since the last group of data in the file may not fill the entire block); and
the number of the first disk block in the file. A UFO may consist of more than one disk block; if it is larger thar
one block, the first word in the UFO is nonzero and gives the link to the next UFO block.

The last element of the disk account structure is the file itself. We have already discussed sequential files anc
random files in Chapter 5, "Introduction to Files." You remember that a sequential file consists of blocks tha
are not necessarily next to one another on the disk, but which are linked together by special address words a'
the front of each block. Random file blocks are allocated in contiguous blocks on the disk.

16-6

A typical account structure might look something like this:

Master
File

Directory

[1,2)

[100,0)

[100,1]

• ..

r---

~

...

UFO
[1,2)

°
DIRECT.LST

BADBLK.LST

UFD
[100,0)

°
DOIT.CMD

ORDER.DAT

UFD
[100,1)

LINK

CONVRT.RUN

PRNTFL.DAT

· · ·
UFD
[100,1)

°
UPDAT.BAS

FILCR.PRG

• .1 Block #1 1 .. I , , ,

~ Block #1 I

.. I Block #1 1 1 , , ,
• .1 Block #1 I 1

.. ,
Block #1

, • .J
PJ 1 1

.. I Block #1 I ~

....I Block #1 1I

.... 1 1 ~

.J Block #1 J -"l

Figure 16-2
Sample Disk Account Structure

How AMOS Handles Devices

Block #2 1 .. I Block #3 I , ~

Block #2 I
Block #2 I Block #3 I

Block #2 I .J
Block #3 I 1 -"l

Block #2 I

Block #2 I

The diagram above shows a very simple account structure for a disk that has only three accounts. Notice that
the UFOs above point to both sequential and random files. (For example, DOIT.eM 0(100,OJ is a sequential file;
ORDERDAT[100,OJ is a random file.)

CHAPTER 17
SYSTEM INITIALIZATION AND STARTUP

Earlier chapters emphasized the flexibility of the AMOS system in adapting to new devices and system config
urations. The key to this flexibility is the system initialization command file, which plays a major part in the
processes of system initialization and startup. Other chapters have mentioned these processes in passing,
but this chapter discusses in greater detail how your system starts up and the role that the system initialization
command file plays in system initialization. (For more information on these topics, refer to the "System Operator's
Information" section of the AM-100 documentation packet.)

The process of system initialization is a very important one on the AMOS system, because you can change the
initialization procedure to reflect changes and additions to your system hardware. Those of you who are
familiar with the operation of large- scale, mainframe computers may recognize system initialization as the
equivalent of the sysgen (system generation) procedure used by such large computers.

Traditionally, small microcomputers have never faced the problem of having to perform a sysgen to integrate
the various devices attached to the system, because such systems usually do not allow you to add or change
the devices originally included with the system. Or, if you can add new devices, you must first get a reassembled
version of the operating system from the computer manufacturer.

Large computer systems, on the other hand, often have to deal with the fact that users want to add new disk
drives, printers, terminals, and other devices. Starting up such a system, which can handle a variety of devices,
is called "performing a sysgen," and is considered a difficult, painstaking, and tedious task. Sysgens are
performed only by a well-informed, experienced System Operator. Even though sysgens are not easily per
formed, they provide one answer to the problem of changing an operating system to reflect changes in
hardware.

The philosophy behind the AMOS system initialization is to give users the ability to change the hardware
configuration of their system without being forced to install a new version of the operating system or go
through a lengthy and difficult sysgen procedure. This results in one of the most important features of the
AMOS system- device independence. That is, the operating system is not restricted to working with a particular
set of disks, terminals, or special devices. Adding a new type of terminal or disk drive to the system is as
simple as adding a new device driver program to the System Disk and modifying the system initialization
command file. In addition, because of the logical I/O routines embedded in the operating system, programs
that access disks or terminals do not have to change when you add new devices, since AMOS takes care of
translating program requests into the actual physical device read/write operations. For example, if you change
your System Device from a Hawk disk to a Phoenix disk drive, your programs that access files on the System
Device do not have to change even though the System Device is different.

17.1 SYSTEM STARTUP

Whenever you power up your system or hit the RESET button, AMOS sets about establishing itself in sharable
memory. This process is called system startup or booting the system. This section gives a brief description of
the system startup process, but for more details on exactly what happens when the system boots, see The
System Initialization Command File, (DWM-00100-09), in the "System Operator's Information" section of the
AM-100 documentation packet.

17-2 System Initialization and Startup

You already know that when you turn off your computer, all contents of random-access memory (RAM) dis
appear. Yet, AMOS must be in main memory if it is to supervise and control the jobs running on your system.
This means that every time you power up your computer, AMOS must copy itself into RAM. Every time you
reset the system, this process occurs again.

Your CPU contains permanent, wi red- in instructions that tell it to start executing instructions contained in
PROMs (Programmable, Read-Only Memory) that are located in your computer hardware.

The program in the PROMs transfers itself into RAM (between locations 31 K-32K) where it begins to execute.
This program (called a bootstrap loaden, reads in the file SYSTEM. MaN from account [1,4] on your System
Disk and loads it into RAM, starting at location zero. (SYSTEM.MON is the skeleton monitor that contains the
kernel of AMOS.)

Incidentally, the term "bootstrap" is derived from the reference to the loop of leather found sewn to the top of
some boots. It was once suggested that if a person could only lift himself up hard enough by his bootstraps,
he might actually leave the ground. AMOS is successful in this feat by getting itself up and running.

17.2 SYSTEM INITIALIZATION

After it has been loaded into RAM, SYSTEM.MON takes over and begins to initialize your system. System
initialization is the process by which AMOS completes building itself in memory. System initialization sets
AMOS up so that it conforms to the specific configuration of the hardware on your system.

What actually occurs during system initialization is that the operating system brings into memory those driver
programs necessary for communicating with the specific terminals connected to your system. The operating
system also builds within itself areas in which to store information about the various jobs and terminals running
on the system (e.g., terminal definition blocks, job control blocks, memory bank tables, system queues, and
device tables). These processes all "customize" the operating system for the actual combination of devices
and jobs that you want to use.

How does AMOS know what terminals and disk drives you are going to want to use? And how does it know
how many jobs you want to run on the system? The mechanism that the Alpha Micro system uses for giving
such information to AMOS is a simple one. When SYSTEM. MaN begins to initialize the system, it sets up a
temporary user partition in the top 8K of memory. It places this partition at the top of memory so that AMOS
has room to expand as it builds itself in memory. (If your system bank switches memory, SYSTEM. MaN sets
up this user partition in the top 8K of Bank Zero.)

Then SYSTEM. MaN loads into that partition a special command file, called the system initialization command
file. (This file is found on your System Disk as SYSTEM.IN 1[1,4].) The first job and terminal defined in SYSTEM. I NI is
used by SYSTEM.MON for processing the SYSTEM.INI command file.

SYSTEM.MON finishes the system initialization process under the control of SYSTEM.INI, which contains
information about the configuration of your system. The last instruction in SYSTEM.INI tells SYSTEM.MON to
de-allocate the temporary user partition at the top of memory. The system is now up and runn i ng and ready for
your commands.

17.2.1 The SYSTEM.INI File

The system initialization command file contains a series of command lines, each of which represents one
system functio~ or parameter that determines the characteristics of the running operating system.

System Initialization and Startup 17-3

Remember that until it begins to process SYSTEM.I N I, AMOS is incomplete- a skeleton monitor. SYSTEM.I NI
is necessary if AMOS is to know what kinds of terminals are being used on the system, what kinds of disks are
being used, whether or not memory management is being used, what jobs are being assigned, and so on.
SYSTEM.lNI actually defines your system to AMOS.

Your system comes with a SYSTEM.INI that has been set up to run with your hardware. Because SYSTEM.lNI
is simply an ASCII text file, you can easily change it with one of the system text editors to reflect changes in
your system. Then, the next time you reboot the system, AMOS builds itself in memory in accord with the new
instructions in your SYSTEM.INI.

We will not go into any detail here on the actual contents of the SYSTEM.lNI file. Briefly, however, you can think
of the commands at the front of SYSTEM.INI as describing and defining the hardware you want to use on your
system (for example, defining terminals, devices, etc.). That is, the first part of SYSTEM.INI defines the resources
you have available on your system. The second part of SYSTEM.INI generally takes care of allocating those
resources (for example, allocating memory, attaching terminals, etc.) For detailed information on the modification
and use of SYSTEM.INI, and for a sample SYSTEM.INI, refer to The System Initialization Command File, (DWM-
00100-09) in the "System Operator's Information" section of the AM-100 documentation packet.

The SYSTEM.INI file gives some important information to AMOS about your system. Below we list some of the
important functions performed by the SYSTEM.INI file. At the end of each paragraph in this list, we give the
name of the command which performs the described task.

Job
Definition:

Terminal
Definition:

Device Table
Definition:

Memory
Management

Bitmap
Definition:

SYSTEM.INI tells AMOS how many jobs will be running on the system and the
names of the jobs. AMOS builds a Job Control Block within sharable memory
for each defined job. The Job Scheduler consults each job's JCB for information
about the current status of that job. JOBS Command.

AMOS must know how many terminals will be running on the system, their
names, and the terminal and interface driver programs necessary to run each
kind of terminal. This portion of SYSTEM.lNI also defines sizes of the buffers
used by each terminal, which are allocated in sharable memory. AMOS builds
a table in sharable memory that contains information about each terminal. It
also loads into memory the terminal drivers needed by the terminals. TRMDEF
Command.

SYSTEM.lNI provides a list of what devices will be used on the system. You
must tell AMOS about any devices such as disk drives or magnetic tape drives
so that it can access the proper device driver programs. (You do not have to tell
AMOS about your System Device, since SYSTEM.MON has already been set
up to run with the device driver for that disk drive.) AMOS builds a device table
in sharable memory that contains information about the devices in use on the
system. The File Service System consults the device table when it accesses a
device. DEVTBL Command.

If your system is going to use memory management, your SYSTEM.INI must
define the memory banks you are going to use so that AMOS can tell which
portions of your memory boards belong to which bank. MEMDEF Command.

Each disk that you are going to be using must have a bitmap defined in memory.
(If your system uses memory management, these bitmaps may be in either
sharable or switchable memory; otherwise, they must all be in sharable memory.)
BITMAP Command.

17-4 System Initialization and Startup

Expanding the
System Queue:

If you want additional blocks allocated to the system queue, your SYSTEM.lNI
must tell AMOS how many more blocks you need. AMOS builds the system
queue in sharable memory. QUEUE Command.

Resident
Program Area
Definition:

If you want to load any programs into the Resident Program Area of sharable
memory, you can only do so at the time of system initialization from within your
SYSTEMINI. These programs must be re-entrant and relocatable. SYSTEM
Command.

Because SYSTEM.lNI is the system initialization command file, it can contain commands that other command
files cannot. Many of the SYSTEM.I N I commands either cannot be used as user commands once the, system
is up and running or perform different functions if used at that time.

All of the system definition functions listed above must be done at the time of system initialization. For your
convenience, you may also place within SYSTEM.I NI any command that can be performed at AMOS command
level.

Some of the AMOS command level functions that are often performed by the SYSTEM.I NI file are:

1. Attaching terminals and jobs via the ATTACH command. (Except for the first job and terminal
defined, all other jobs and terminals must be explicitly attached to one another if those jobs are
to be able to use terminals for input and output.)

2. Allocating memory to jobs. If your system uses memory management, you may use JO BM EM
commands to allocate user partitions in switchable memory. If your system does not use
memory management, you can use the FORCE and MEMORY commands to allocate user
partitions. (The FORCE command sends input to another job. In this case, the job that is
processing SYSTEMINI is sending (or "forcing") a MEMORY command to another job in
order to allocate a memory partition for that job.)

3. Setting terminal characteristics. SYSTEM.INI can use the SET command to set certain display
options for the terminal attached to the job that is processing SYSTEM.I N I.

4. Setting up a line printer spooler. This is usually done at the time of system initialization. (Re
member that the spooler is the program that allows all users on the system to print files at the
same time that they perform other tasks.)

5. Mounting disks. Before you can write to a disk, the bitmap for that disk must be in memory. The
MOUNT command ensures that the proper bitmap will be used when AMOS tries to access
the mounted disk.

6. The final statement in SYSTEM.INI is MEMORY O. The MEMORY 0 command de-allocates
the temporary 8 K user partition that was allocated by SYSTEM.MON for processing SYSTEM.I N I.

Any time you change the hardware configuration of your system, you must change the SYSTEM.INI to reflect
those changes.

WARNING: Changing the SYSTEM.INI file is usually the responsibility of the System Operator.
Although modifying your SYSTEMINI is not difficult, it requires a thorough understanding of the
system, and should not be done lightly. If you do modify it, be sure to read Thp ""ystem Initialization
Command File, (DWM-00100-09), in the "System Operator's InformatioY

" section of the AM-100
documentation packet very carefully before doing so. Also, never modify SYSTEM.I N I directly; make a
copy of it under a different name and modify the copy. Then you can use the MONTST command to

System Initialization and Startup

test the copy. That way, if something should go wrong, you still have a good SYSTEM.I NI from which
to boot the system.

17-5

Now that we've talked about the myriad of functions performed by the system initialization command file, you
have a better idea of the power and flexibility the initialization process gives to your computer system.

EPILOG

The intention of this book has been to carry you from a very basic introduction of the structure, limi,tations,
uses and science of computers to an awareness of the vocabulary, concepts and power of the Alpha Micro
Operating System. So that the potential usefulness of the system can be better realized by you, the emphasis
of the book has been on understanding why the system works as it does, rather than just discussing how to
work it.

Most importantly, we have tried to illustrate the "big system" philosophy behind the Alpha Micro compute!
system.

Where you go from here depends on you. You now have a background in the concepts used by the othe!
Alpha Micro software documentation- you are ready to really begin your self-education on the Alpha Micro
system by tackling the specific documentation aimed at your particular needs. Be sure to read Appendix B,
"Where Do I Go From Here?", for suggestions on what documents to read next. If you are confused by any 01
the phrases used in this book, refer to Appendix C, "The Glossary", for clarification.

This book was meant as a beginning and an introduction. Now that you've made AMOS's acquaiontance,
you've just begun- now it is time for you to establish a satisfying and successful working relationship wi,th the
system. We hope that this book has gotten you off to a good start in that endeavor.

And finally, it would be of great help to us in our future documentation efforts if you would take a moment to fill
out the "Software Documentation Reader's Comments" form at the back of this book. We appreciate YOUI
comments and suggestions.

APPENDIX A
CONVERSION CHARTS

When using computers, a basic understanding of various numbering systems may be desirable. AMOS
account numbers, for instance, are octal numbers. If you were to select an account number outside of the
octal set (that is, a number with an 8 or 9 in it), you would receive back an unwanted result. It would be easier to
understand why the problem occurred and how to remedy it if you realized you were dealing in octal rather
than decimal.

We review some basic features of the binary(base 2), octal (base 8), decimal (base 10) and hexadecimal (base
16) numbering systems in this appendix. Then we give you a conversion chart for the first 100 expressions of
those four numbering systems and tell you some of the easier ways to convert among them.

The stars in the below charts represent the object or objects which the character set enumerates; in reality we
can only express numbers (which are ideas or concepts) by numerals, which are symbols.

A.1 DECIMAL OR BASE 10

The decimal numbering system is the one we have been familiar with since childhood. The entire character
set consists of:

o
1 *
2 * *
3 * * *
4 * * * *
5 *****
6 ******
7 *******
8 ********
9 *********

The base number of the system is TEN, written 10, and represents ********** objects.

A.2 BINARY OR BASE 2

The binary numbering system is the one computers actually deal in. The characters of the binary system
represent electrical signals absent or electrical signals present, either of which is significant. The entire
character set consists of:

o
1 *

The base number of the system is TWO, written 2 (base 10) or 10 (base 2) and represents * * objects.

A-2 Conversion Charts

A.3 OCTAL OR BASE 8

The octal numbering system is used in the Alpha Micro System and other popular systems as a form of binary
shorthand. The entire character set consists of:

o
1 *
2 * *
3 * * *
4 * * * *
5 *****
6 ******
7 *******

The base number of the system is EIGHT, written 8 (base 10) or 10 (base 8) and represents ******* *
objects.

A.4 HEXADECIMAL OR BASE 16

The hexadecimal numbering system is used as a form of binary shorthand also, requiring even fewer digits
than base 8 to represent the same number. The entire character set consists of:

o
1 *
2 * *
3 * * *
4 * * * *
5 *****
6 ******
7 *******
8 ********
9 *********
A **********
B ***********
C ************
D *************
E **************
F ***************

The base number of the system is SIXTEEN, written 16 (base 10) or 10 (base 16) and represents

* *************** objects.

Conversion Charts

A.5 CHART OF CONVERSION TO EQUIVALENTS FROM 1 (BASE 10) TO 100 (BASE 10)

BINARY OCTAL DEC HEX "BINARY OCTAL DEC HEX

00000001 1 1 1 00110011 63 51 33
00000010 2 2 2 00110100 64 52 34
00000011 3 3 3 00110101 65 53 35
00000100 4 4 4 00110110 66 54 36
00000101 5 5 5 00110111 67 55 37
00000110 6 6 6 00111000 70 56 38
00000111 7 7 7 00111001 71 57 39
00001000 10 8 8 00111010 72 58 3A
00001001 11 9 9 00111011 73 59 38
00001010 12 10 A 00111100 74 60 3C
00001011 13 11 8 00111101 75 61 3D
00001100 14 12 C 00111110 76 62 3E
00001101 15 13 D 00111111 77 63 3F
00001110 16 14 E 01000000 100 64 40
00001111 17 15 F 01000001 101 65 41
00010000 20 16 10 01000010 102 66 42
00010001 21 17 11 01000011 103 67 43
00010010 22 18 12 01000100 104 68 44
00010011 23 19 13 01000101 105 69 45
00010100 24 20 14 01000110 106 70 46
00010101 25 21 15 01000111 107 71 47
00010110 26 22 16 01001000 110 72 48
00010111 27 23 17 01001001 111 73 49
00011000 30 24 18 01001010 112 74 4A
00011001 31 25 19 01001011 113 75 48
00011010 32 26 1A 01001100 114 76 4C
00011011 33 27 18 01001101 115 77 4D
00011100 34 28 1C 01001110 116 78 4E
00011101 35 29 1D 01001111 117 79 4F
00011110 36 30 1E 01010000 120 80 50
00011111 37 31 1F 01010001 121 81 51
00100000 40 32 20 01010010 122 82 52
00100001 41 33 21 01010011 123 83 53
00100010 42 34 22 01010100 124 84 54
00100011 43 35 23 01010101 125 85 55
00100100 44 36 24 01010110 126 86 56
00100101 45 37 25 01010111 127 87 57
00100110 46 38 26 01011000 130 88 58
00100111 47 39 27 01011001 131 89 59
00101000 50 40 28 01011010 132 90 5A
00101001 51 41 29 01011011 133 91 58
00101010 52 42 2A 01011100 134 92 5C
00101011 53 43 28 01011101 135 93 5D
00101100 54 44 2C 01011110 136 94 5E
00101101 55 45 2D 01111111 137 95 5F
00101110 56 46 2E 01100000 140 96 60
00101111 57 47 2F 01100001 141 97 61
00110000 60 48 30 01100010 142 98 62
00110001 61 49 31 01100011 143 99 63
00110010 62 50 32 01100100 144 100 64

A-4 Conversion Charts

A.6 CONVERSION METHODS

We will discuss in this section a few convenient methods of converting numbers among the four popular
numbering systems. If you need to do more than become comfortable with the concept of converting between
numbering systems, it might be wise to check entire books on the subject for more than the elementary
explanation provided here.

A.6.1 Binary to Decimal

Binary arithmetic is based around 2 (base 10) and powers of 2. Conversion from base 2 to base 10 is a matter
of identifying which quantity in base 10 is being represented by a base 2 expression. Let's assume a,number
in base 2 that we will convert to base 10 a digit at a time:

10110111

Picture this number in a grid Which separates the digits:

64 16 8 4 2

a a

\lotice that the headers on the grid begin, from right to left, with 1 and increase by powers of 2. That is, 2 raised
:0 the a power (2°) equals 1. 21 =2. 22=4. 23=8... . .. and so on. Since we are dealing here with
in eight-digit number, we have only gone as high as28=128 (in which we could represent up to 255 (11111111)
wantities. Of course, we could go on indefinitely.

:onverting the number in the 2° column (or 1's column) first, we mentally scratch it down on our memory pad.
,ince a 1 appears in the 1's column, we write down a 1. AO in the 1's column would mean we would write down
i 0, or, in fact, simply ignore that column. Then we look at the 21 or 2's column. A a in the 2's column would
igain mean we would write a O. But a 1 in the 2's column means we put a 2 on our scratch pad under the 1.
We are going to add them late~ A 1 in the 22 column (or 4's column) means we put a 4 under the 2 on our
;cratch pad. A a in the 8's (or 2) column means we ignore it. A 1 in the 24 (16's column) means we put a 16
Jnder the 4 on the scratch pad. We also put a 32 under the 16 on the scratch pad from the 25 column (32's).
Ne ignore the 260r64's column and record a 128 on the scratch pad from the 27 column. Therefore, on our
nental scratch pad we hold this:

Nhich we add to equal 183

1
2
4

16
32

+128

Therefore, 10110111 (base 2) = 183 (base 10), which we derived by adding the appropriate powers of 2.

Conversion Charts A-5

A.6.2 Decimal to Binary

Starting with a decimal number and converting to binary is a matter of subtracting from the base 10 number
the highest power of 2 which can be extracted, leaving a difference greater than or equal to O. We can record
the power of 2 in a mental grid similar to the one used in the section above. The power of 2 is represented in
the grid by a 1 in the proper column. If the next lowest power, subtracted from the difference, is less than 0, that
power is represented in the grid by a O. If subtracting the next lowest power leaves a difference greater than or
equal to 0, then record it also in the appropriate column of the grid. And so on until the difference equals 0, at
which time all remaining columns to the right, if any, are filled with zeros.

Let's convert the decimal number 204:

204 -128 = 76 (76)0) Place a 1 in the 128's column

76 - 64 = 12 (12)0) Place a 1 in the 64's column

12 -32 = -20 (-20<0) Place a 0 in the 32's column

12 -16 =-4 (-4<0) Place a 0 in the 16's column

12 -8 =4 (4)0) Place a 1 in the 8's column

4-4=0 (=0) Place a 0 in the 4's column

0 (=0) Place a 0 in the 2's column

0 (=0) Place a 0 in the 1's column

128 64 32 16 8 4 2 1

1 o o 1 o o

A.6.3 Binary to Octal

The octal numbering system, or base 8, is very simple to convert from binary, since 8 is a direct multiple of 2.
Since 8 is 23, we will transform each group of 3 digits in a binary expression into its equivalent octal expression of 1
digit. The binary digits in groups of 3 and their octal equivalents are:

000=0
001 = 1 (base 8)
010 = 2 (base 8)
011 = 3 (base 8)
100 = 4 (base 8)
1 01 = 5 (base 8)
11 0 = 6 (base 8)
111 = 7 (base 8)

A-6 Conversion Charts

Let's convert the binary numeral 100101010 to its octal equivalent:

100101 010

Notice that we have broken the digits into groups of three. This is only for convenience, and not by standard
or convention. To begin, take the group to the left, 100, and find its octal equivalent, which is 4. Record 4 on
your mental scratch pad for a moment. Convert the middle group to octal, which is 5. Record this to the right
of the 4. Finally, convert the group to the right into its octal equivalent, which is 2, and record that to the right
of the 5. The numeral on your mental scratch pad is the octal equivalent of the binary expression.

Therefore, 100101010 (base 2) = 452 (base 8)

A.S.4 Binary to Hexadecimal

The hexadecimal, or base 16 numbering system (often known as hex) is also very simple to convert from
binary, since 16 is a direct multiple of 2 as well. Since 16 is 24, we will transform each group of 4 digits in a
binary expression into its equivalent hex expression of 1 digit. Again, placeholders are implied. Alphabetic
symbols represent values also, and are not to be considered as letters. The binary digits in groups of 4 and
their hex equivalents are:

0000 =0
0001 = 1 (base 16) = 1 (base 10)
0010 = 2 (base 16) = 2 (base 10)
0011 = 3 (base 16) = 3 (base 10)
0100 = 4 (base 16) = 4 (base 10)
0101 = 5 (base 16) = 5 (base 10)
0110 = 6 (base 16) = 6 (base 10)
0111 = 7 (base 16) = 7 (base 10)
1000 = 8 (base 16) = 8 (base 10)
1001 = 9 (base 16) = 9 (base 10)
1010 = A (base 16) = 10 (base 10)
1011 = 8 (base 16) = 11 (base 10)
1100 = C(base 16) = 12 (base 10)
1101 = D(base 16) = 13 (base 10)
1110= E (base 16) = 14 (base 10)
1111 = F (base 16) = 15 (base 10)

Let's convert the binary number 1101010111001110 to hex:

1101 0101 1100 1110

To begin, take the group to the left, 1101, and find its hex equivalent, which is D. Record the 0 on your mental
scratch pad. Convert the next group to 5, and record that also, to the right of the O. The third group converts to
C, so record that also. Finally, the last group to the right converts to E, so record that. Now you have on your
scratch pad the hexadecimal equivalent of the binary number above.

Therefore, 1101010111001110 (base 2) = 05CE (base 16).

Remember that this also is simply a method of shorthand to make binary data a little more handy to the
programmer.

Conversion Charts A-7

A.6.5 Decimal to Octal

Octal arithmetic is based around 8 (base 10) and powers of 8. You have to keep in mind when converting to
octal that you must consider the multiples of the powers of 8. That is, 64 is 8 to the second power (82). But 128
is 2*(82), or the second multiple of 8 to the second power. When converting from decimal to octal, it is the
multiples of the powers of 8 TIMES the powers of 8 which become the octal equivalent.

To illustrate, we will assume the decimal numeral 705. (In this illustration, all numerals appear in their base 10
form.)

705 is between 83 (512) and 84 (4096). 83 is the closest power of 8 which is less than or equal to 705,so
we now consider which multiple of 83, or512, is closest to yet less than or equal to 705. 2 * 512 is 1024,
greater than 705. So it is, of course, 1 *512 or 512. We calculate that 705 - 512 = 193. We record the
multiple 1 on our scratch pad (we'll see it become the leftmost octal digit.) Having begun at 83, we
must step down through the powers consecutively until we reach 80, or 1. 193 is the difference betw
een the decimal number we're converting (705) and the multiple (1) times the power (83, or 512). We
check to see whether the difference is greater than or equal to the next lowest power (82, which is 64)
or less than it. If the difference is greater than or equal to the next lowest power, as it is in the example,
we again consider which multiple of 64 is closest to but less than or equal to 193. We find that itis
3 * 64 = 192. We record the 3 on our scratch pad to the right of the 1. We subtract 192 from 193 to
equal 1. 1 is the new difference, and this time it is less than the next lowest power (81 or 8). The power
must be lower than the difference, so we simply record a 0 as placeholder on our scratch pad to the
right of the 3. Once again, we step down to the next lowest power, which is 8 0 or 1. The difference of
1 equals the multiple (1) of the power, which is 1 also. Subtracting the multiple of the power from
the difference would give us a new difference of O. We record the last digit on the scratch pad,
which is the multiple 1, next to the O. Were there any more digits to the right to be filled, they would be
placeholders, or zeros. Reading the scratch pad, we see 1301. This is the octal equivalent to 705 in the
decimal system. That is, 705 (base 10) = 1301 (base 8).

Let's do another example, pictorially. We will convert 93 (base 10). Again, the numerals used here are the
decimal equivalents of the values unless otherwise specified.

So:

So:

So:

93> 64 (82)

93 < 512 (83)

93 >= 1X64

29 >=3X8

5 >=5X1

Therefore,93 (base 10) = 135 (base 8)

93
Subtract: -64

29

29
Subtract: -24

Subtract:

5

5
-5

o

t----I:. Write down a 1

1----1. Write down a 3

. Write down a 5

A-8 Conversion Charts

Perhaps a convenient check to you is to convert the decimal number first to binary, then the binary to octal:

705 (base 10) = 1 011 000001 (base 2) = 1301 (base 8)

93 (base 10) = 1 011 101 (base 2) = 135 (base 8)

A.6.6 Octal to Decimal

Converting from the octal to the decimal numbering system can be visualized most readily in a grid, as
converting binary to decimal was. In this case, however, first a multiplication and then an addition must take
place to convert each digit. Let's convert 577 (base 8) to its decimal equivalent:

8

7 7

Notice that the headers of the column are the powers of8; from left to right they are 82 or64, 81 or8 and 80 or1.
The theory of conversion by this method is to multiply the number in each column by the header of that
column, then add all the results. 5*64 is 320. We record 320 on our mental scratch pad. 7*8 = 56, so we write
56 under the 320. 7*1 = 7, and we write 7 under the 56. Then we add:

320
56
+7

And the sum is 383.

Therefore 577 (base 8) = 383 (base 10).

Let's do another quick one pictorially:

We will convert 100 (base 8) to base 10.

1X82 = 64
OX81 = 0
OXOo = +0

64

Therefore, 100 (base 8) = 64 (base 10).

Again, perhaps the quickest way to check is to convert to binary from octal, then from binary to decimal. Octal
to decimal conversion is rather easy, however, and a check may not usually seem necessary.

577 (base 8) = 101111111 (base 2) = 383 (base 10)
1 00 (base 8) = 1 000000 (base 2) = 64 (base 10)

APPENDIXB
WHERE DO I GO FROM HERE?

Now that you've been introduced to the system, you are ready to begin communicating with AMOS and the
programs that run under its control. You may be wondering which of the Alpha Micro software manuals to read
next. We realize that the profusion of Alpha Micro software documentation may appear bewildering at first
glance. The purpose of this appendix is to direct you to the next step in your Alpha Micro education. The
discussions below assume that you are new to the AMOS system.

For a complete list of the documents available from Alpha Micro, refer to A Guide to the Alpha Micro Software
Documentation Library, (DWM -001 00 -3 7).

8.1 IF YOU ARE THE SYSTEM OPERATOR

IMPORTANT NOTE:
If your system software has not been set up to reflect the particular combination of terminals and
disk devices on your system (that is, if you are installing the system software yoursem, you MUST
read the "System Operator's Information" section of the AM-100 documentation packet before you
do anything else! After the system is up and running, you will want to read the general user doc
umentation, the AMOS User's Guide, (DWM-00100-35).

The system software installation may already have been done for you before you bought your system. In that
case, you probably will want to read the AMOS User's Guide, (DWM-00100-35), right away before you begin to
use the system. This manual gives actual system operation instructions for the beginning user of the AMOS
system.

With every new software release, you ought to read the Software Release Notes at the front of the AM-100
documentation packet. This document will inform you of any important changes in the new software release.
You will also need to consult the "System Operator's Information" section of that packet to see if any important
changes have been made to the system software.

Once you have become an experienced user of the system, you will often refer to the AMOS System Commands
Reference Manual, (DWM-00100-49), which contains reference sheets on all AMOS commands, including
those privileged commands that only the System Operator may use.

(NOTE: Some of the commands discussed in the AMOS System Commands Reference Manual are potentially
dangerous to the system if used incorrectly, and should be used only by you, the System Operator. If you are in
charge of distributing software documentation, you may want to remove the reference sheets for those com
mands before distributing the AMOS System Commands Reference Manual.)

B.2 IF YOU ARE A GENERAL USER OF THE SYSTEM

The first thing you will want to read is the AMOS User's Guide, (DWM-00100-35). This manual gives general
information on using the system and discusses the most important AMOS commands.

B-2 Where Do I Go From Here?

Next, you should glance through the "User's Information" section of the AM-100 documentation packet to see
if you are interested in reading any of the documents in that section. (For example, if you are not going to be
using the ISAM system for organizing and retrieving data, you will probably not want to read Important Notice
for ISAM Users. However, you may be interested in one of the other documents in that section.)

Because you will probably want to be doing text editing at some point (for example, creating reports, letters, or
programs), you should read the VUE reference manual, AlphaVUE User's Manual, (DWM-00100-15). You will
also want to read the TXTFMT User's Manual, (DWM-00100-07) to find out how to use the Alpha Micro text
formatting program.

After you have become familiar with using the system, you will want to refer to the AMOS System Commands
Reference Manual, (DWM-00100-49), for information on all of the AMOS commands. (The AMOS User's Guide
will introduce you to the AMOS commands you will use the most; however, the AMOS System Commands
Reference Manual discusses all of the commands available on the system.)

B.3 IF YOU ARE A BASIC PROGRAMMER

First, you will want to read the AMOS User's Guide, (DWM-00100-35), to learn how to use the system.

Then, read the AlphaBAS/C User's Manual, (DWM-00100-01), for information on Alpha Micro BASIC.

The next thing you will want to read is the VUE reference manual- Alpha Vue User's Manual, (DWM-00100-15),
so that you can use VUE to create BASIC programs outside of BASIC.

Finally, you will want to read the "BASIC Programmer's Information" section of the AM-100 documentation
packet for information on some of the BASIC subroutines available for your use on the AMOS system.

B.4 IF YOU ARE AN ASSEMBLY LANGUAGE PROGRAMMER

To gain a general knowledge of system operation, read the AMOS User's Guide, (DWM-00100-35).

Your next step will be to read the AMOS Assembly Language Programmer's Reference Manual, (DWM-00100-
43) and the WD16 Microcomputer Reference Manual, (DWM-00100-04). These manuals introduce you to
assembly language programming on the AMOS sysfem.

Once you begin to write assembly language programs, you will want to refer to the documentation on DDT (a
machine language debugger program) in the AMOS Assembly Language Programmer's Reference Manual,
(DWM-00100-43) to find out how to test and modify your programs. Also, for information on the Alpha Micro
screen-oriented debugger, see the AlphaFIX User's Manual, (DWM-00100-69).

For information on making use of assembly language routines embedded in the operating system itself, refer
to the AMOS Monitor Galls Manual, (DWM-00100-42).

Finally, you ought to read the "System Programmer's Information" section in the AM-100 documentation
~~ .

You will probably want to refer to the AMOS System Commands Reference Manual, (DWM-00100-49), for
information on all of the commands available on the AMOS system.

Where Do I Go From Here? 8-;

8.5 IF YOU HAVE SPECIAL USES FOR THE SYSTEM

Beside the documentation we mention above, other manuals and documents are available that explain th
use of various system programs.

For example, if you are interested in using the ISAM system for organizing and accessing data, you will want t
read the ISAM System User's Guide, (DWM-00100-06), and the Important Notice for ISAM Users, (DWW
00100-36). If you want to program in the PASCAL or LISP languages, you will want to refer to the AlphaPASCA
User's Manual, (DWM-00100-08), and the AlphaLlSP User's Manual, (DWM-00100-05), for information 0

those language processors.

APPENDIXC
GLOSSARY

This glossary contains entries for words and phrases that appear in this book. These terms also appear in
other Alpha Micro software documentation. If an explanation below still leaves you feeling at a loss, turn to the
Index and see if the word appears in this book. It may be that the context in which that word is used will make
its meaning clearer to you.

The words or phrases for which we have included definitions appear below in boldface. Words in italics are
terms that appear elsewhere in this glossary with their own definitions.

C.1 THE GLOSSARY

Absolute Memory Address - Specifies a memory location by
giving its actual address within memory, rather than by specifying
its position relative to some known reference pOint, such as a
program or buffer.

Absolute Memory Area - A group of memory locations in
memory specified by their absolute memory addresses. See
Absolute Memory Address.

Account - A method of organizing individual files on a disk,
usually related by their significance to you. See Project-Program
mer Number (PPN).

Account Directory - See Directory.

Account Number - An Octal number identifying an account
on a disk. See Account. See Project- Programmer Number (PPN).

Account Specification - Same as Account Number. See Pro
ject-Programmer Number (PPN).

Addressing Umlt- The highest-numbered address which can
be referenced by a CPU. In the Alpha Micro system, the CPU
can access 216 addresses (0 through 65,535).

AlphaBASIC- Alpha Micro version of the BASIC programming
language. It is a compiler rather than an interpreter and can oper
ate in both interactive and compiler modes. See BASIC Language.

A1phaLiSP - Alpha Micro version of the LISP programming
language. Designed especially for performing non- numeric
computation such as symbol manipulation. See LISP.

Alpha Micro Operating System - Alpha Micro's program that
supports all other programs on the system. See Operating System.

AMOS - Acronym for Alpha Micro Operating System.

AMOS Command - Any of more than 100 words or letter
combinations entered by a user which AMOS can interpret to
perform a specific operation.

AMOS Computer System - Any of Alpha Micro's combinations
of hardware and software as employed by a single group of users.

AMOS Monitor Call- Any of more than 70 various codings to
be embedded in an assembly language program which cause
the access of monitor routines when the program is run.

AMOS Prompt - The dot or period symbol (.), indicating that
AMOS is ready for a command to be entered by the user.

AMOS System - See AMOS Computer System.

Architecture - 1. In the CPU, the physical and electrical con
struction of the several integrated circuit devices combined with
many interactive switching devices. 2. In a computer system, the
CPU, interface devices and other peripheral devices connected
together to interact for certain kinds of operations. 3. In a program,
the construction of several logical procedures built upon one
another to interact for a desired program result.

Argument - One or more numeric or alphabetic characters
accepted by a function which affect the operation of that function
and supply the data on which the function will work. For example,
when commanding your system to print a file, PAl NT is the function
and the file specification you give is the argument. The function
is thus limited to printing that file.

Array- A set or sets of characters arranged in a meaningful way
or pattern, such as a grid of line segments or a list of words.

ASCII - Acronym for American Standard Code for Information
Interchange. It is a widely accepted standard for representing all
common and some special keyboard symbols with numeric values
in the Binary numbering system.

Assembler Program (MACRO) - See MACRO,

Assembly Language - A group of symbolic names called
mnemonics which can be arranged to form instructions that
translate one for one to the numeric value of machine language
instructions. The mnemonics are easier to remember and work
with than the series of numbers that are machine language
instructions. They are converted to numbers by use of an assem
bler program (MACRO).

Assembly Language Subroutine - See Subroutine.

G-2

Attaching Terminal. - Before ajob can communicate with the
computer system, it must be attached to a terminal. This is done
with the AMOS command called ATTACH. See Job.

Backup File - After using one of the Alpha Micro text editors,
when writing a modified file back out to the disk, the version of
the file before the modification is safeguarded in a special transfer
process and then renamed with the same filename, but given
the extension .BAK.

Bank - See Bank of Memory.

Bank of Memory - A method of adding memory to the system
beyond the 64 K addressing capability of the CPU. Separate banks
of memory have duplicate addresses to 65,535, but only one
bank is turned on in a given instant as the system timeshares
between jobs.

BASIC Language - BASIC is an acronym for Beginner's AII
purpose Symbolic Instruction Code. There are many slighty dif
ferent versions of BASIC now, so it is not considered a stand
ardized language. BASIC is the most popular computer language
because it permits the use of familiar English words and math
ematical symbols to perform operations.

BASIC Language Processor - Translates BASIC language
commands into pseudo machine language commands which the
run-time package can accept and process. The BASIC language
processor can be an interpreter or a compiler.

BASIC Staternent- A command in the BASIC language which
is the equivalent to many machine language commands. BASIC
statements are often similar to English terms or mathematical
operators, and simple to learn.

Binary - The binary numbering system has 2 as its base and
expresses all quantities with the numerals 0 and 1. The value of
binary digits is evaluated by position in ascending order from
right to left.

Bit - A binary digit 0 or 1. It is the smallest unit of data in a
computer. -

Bitmap - The structure AMOS uses to keep track of which disk
blocks are in use, and which are available.

Block - See Disk Block.

Block of Text - A general term meaning t'NO or more lines of
text as they appear on a CRT screen or a printout.

Booting the System - Or, "bootstrapping," from the phrase,
'Pulled himself up by his bootstraps.' At system startup, permanent
instructions wired into the computer cause AMOS to start loading
itself into memory.

Bootstrap Loader - The program in Programmable ROM
(PROM) which transfers itself into RancJorrrAccess Memory (RAM) at
system startup and loads the skeleton monitor program from the
system disk.

Breakpoint - DeSignates the spot in a program where you want
to interrupt execution to perform debugging functions.

Buffer - A storage area in memory where data is copied so it
can be processed.

Glossary

Bu. - (pl. busses) - A circuit or circuits which provide a path of
communication between tIM) or more computer system devices.

Byte - Eight bits. See Bit.

Card Punche., Readers and Sorters - Electro- mechanical
devices for writing, reading and sorting punch cards, a media of
permanent storage often processed in large batches at a time.

Carriage Return - Also, a keyboard key named CARRIAGE
RETURN, RETURN, or RET. On a terminal, returns the cursor to
column 1. At the AMOS command level, it signals the operating
system that the commands in the keyboard buffer are ready to
be processed.

Central Processing Unit or CPU - The CPU controls all tasks
which occur in the computer system and all interfacing with the
other components.

Chaining - In BASIC, the ability of a program to connect or link
another existing program to itself during execution rather than
having to incorporate a similar sub- program into itself.

Character-oriented Text Editor - A text processor using a
pointer moved through the text by commands you enter to perform
operations on that text.

Character String - One or more ASCII characters grouped to
form an element of data.

Circuit - One or more electric or electronic devices, plus
connectors, which form a complete, closed path for electron flow.

Code -1. A set of instructions. 2. To prepare a set of instructions.

Command - An order which you give to a computer to cause it
to respond in a specific way.

Command File - An ASCII text file of commands and data you
define, whose contents can be processed simply by entering
the name of that file.

Command Language - The set of all commands. The command
language of AMOS is well over 100 separate commands.

Complied Program - A program which has been translated
by a language processor into machine language or a form which
is close to it.

Compiler - A language processor which translates a source
program into a compiled program.

Computer Language - Two types of computer languages,
higher-level languages or assembly language, are terms for sets
of elements we can combine to form programs. Each command
can represent at least one and possibly hundreds of machine
language elements in a way that is more convenient for humans.
Ultimately, all commands are processed by the computer as
machine language.

Computer System - See AMOS Computer System.

Concatenate - To connect or link in a series or chain. For exam
ple, to concatenate two files is to append one onto the other.

Conditional Test - An element of a program. The computer
tests one or more variables to see if they meet the specified con
dition. Depending on the result of the test, the computer can be
made to do different operations.

Glossary

Contiguous Disk Blocks - Blocks of storage which physically
adjoin on a disk.

Contiguous File - See Random File.

Control Character- Any of a special class of characters used
to represent certain control functions. For example, a Control- M
represents a carriage retum symbol, and indicates that the
RETU RN key has been pressed. AMOS uses some of the control
characters to represent special functions (e.g., a Control- U deletes
the current input line). To type a control-character, hold down
the Control key and press the appropriate letter-key.

Control·C proce .. lng or trapping - In BASIC, the ability to
redefine Control- C to do other functions besides interrupting the
BASIC program. For example, to go to a second routine embed
ded in the program.

Copying - The process of duplicating data from one area or
kind of storage to another without touching the original set.

CPU - See Central Processing Unit.

CRT Terminal - A hardware device enabling communication
with the CPU, that has a video (Cathode Ray Tube) screen which
displays ASCII characters.

Cursor - A moving indicator of light on a CRT terminal display
that indicates the last position where characters were displayed
(either your input or AMOS's output).

Data - A subset of information especially formatted for logical
processing.

Data File - A file which contains related data. See File.

Data Processing - The rearrangement and refinement of data
to make that data suitable for our purposes. Such data handling
may include word processing, numeric computation, re-ordering,
etc.

Data Structure- The particular way in which data is represented in
memory, such as a matrix, a doubly-linked list or an array.

DDT - An interactive program that allows you to display and
modify assembly language programs to detect programming errors.

Debugging - The process of detecting and removing errors in
a program.

Debugging Program - See DDT.

Declaring Yarlables- In structured programming, the process
of defining what types of variables will appear in the program
(e.g., string variables, integer data, floating point).

Default- Data assumed bya command from internal sources if
you do not supply information. For example, if you do not supply
an extension to the file specification you give to the PRINT
command, it defaults to .LST (indicating one kind of a text file).

Device - The peripheral units outside your CPU that it can
communicate with.

DevIce Drlver- A program that allows the CPU to communicate
with a specific I/O device connected to the system.

Device Table - Generated by AMOS, it contains information
about the devices in use on the system.

c-

Diagnostic Test - Any of various programs that detect errors i
temporary or permanent storage. (e.g., A memory diagnosti
program called DlAG3 diagnoses problems, if any, in systel
RAM.

Directory - A list of files associated with an account.

Disk - A permanent storage device consisting of one or mOl
disk-shaped, magnetically sensitive recording surfaces rotatin
inside a mechanism called a disk drive. There are two majc
types of disks. A "hard" disk is made of metal, and a "floPPl
disk is made from a thin film of mylar plastic.

Disk Account - See Account.

Disk Bitmap - See Bitmap.

Disk Block - Divisions of 512 - byte units which AMOS impOSE
on a disk for structuring purposes, regardless of the built- in struc
turing attributes of the disk. Disk block 0 contains the first 51
bytes on the disk.

Disk Controller - An electronic device enabling the CPU I
control, read from, and write to the disk device. Some Alpha Mici
disk controllers are: AM-21O, AM-410, and AM-500.

Disk Formet- The phYSical pattern in which data is written c
the disk.

DO File - A special command file you can create whose pan
meters are assigned by arguments you enter when you invo~
the DO file. See Command File.

Driver - See Device Driver.

Echoing - The response of the computer to a character type
on the keyboard. The image appearing on the terminal display
the echo from the computer.

EDIT - 1. The AMOS character-oriented text editor. 2. (veri
The process of making written material suitable for presentatio

Error Message - A message appearing on your displ~
explaining that a command you have just entered cannot t
performed, and usually telling you why.

Error Trapping - Within a language processor, the ability I
react within the program to recover from an error rather thE
crashing the system or returning to AMOS command level.

Escape - A special key on the terminal keyboard (labeled ESC
ESCAPE or ALT MODE) that is used by different programs on tt
AMOS system to initiate special functions.

Execute - (verb) Carrying out the instructions that make up
program.

Extension - The characters following the filename that tell yc
and AMOS the kind of file it is. The name and extension of the fi
are separated by a dot.

External Ubrary of Programs - A set of existi~ progran
you can call to supplement programs you write.

File - A structure that groups logically related data together.

G-4

File extension - See Extension.

Filename - a label identifying the name of a file.

File SpecIfIcatIon - Consists of the disk name, filename, exten
sion and the account number (e.g., DSK2: MYFI LE.TXl[50 ,1 D.

floating Point Number- A method used by the computer to
express a number physically either too small or too large (be
cause of the number of digits) for the CPU to handle conventionally.
By using scientific notation and shifting the decimal point, the
number can be expressed in two segments:- the significant digits
and the exponent (e.g., 1,234,567,890 is expressed as approx
imately 123457E9, or 1.23457 X 10 to the 9th power; 1 billion).

Floppy Disk - A small disk of mylar plastic coated in magnetic
ally sensitive material and enclosed in a cardboard sheath. Used
for permanent storage, it is easy to handle and store.

Flow Diagram - See Flowchart.

Flowchart - A written or drawn outline of the logical "flow" of a
procedure, to be converted in essence to a program.

Format (DIsk) - See Disk Format.

formatting (Taxi) - The process of arranging text into a finished
format according to commands you embed in the source file.

Function - A special command that accepts an argument and
returns an answer which the computer derived based on the
argument.

Hard Copy Termlnal- A terminal that prints on paper all inter
action between you and the computer, as opposed to displaying
it on a CRT screen. See CRT Terminal.

Hard Disk - A permanent storage device which consists of
hard metal disks coated with a magnetically sensitive compound
upon which data can be recorded. Some disks (called disk "car
tridges" or "packs") are removable from the disk drive.

Hardware - A general term for the mechanical, electric and
electronic aspects of the computer system.

Hardware Configuration - The arrangement of the physical
components of your computer system, including the CPU, peri
pherals, interconnecting devices and memory boards.

Hash Mark - See Hash Total.

Hash Total- A computed value based on characteristics of the
file, such that the hash total can uniquely identify the file.

Hawk Disk Drive - A brand of hard disk drive having one fixed
and one removable disk.

Hlerarchy- A structure built on different levels of power, impor
tance or supervision.

Higher-level Language - Any computer language where one
statement can take the place of groups of machine language
commands for programmer convenience.

VO - Abbreviation for inpuVoutput. The interface of the computer
with the real world is through its ability to input and output data.

Glossary

Input/Output Port- The mechanism for inputting (bringing in)
and outputting (sending out) data that occurs when the computer
communicates with its devices.

Instruction Set- The set of machine language instructions the
CPU recognizes.

Integer Data - A type of data made up of integers. An integer is
a "whole number." That is, it contains no numbers to the right of
the decimal point.

Interactive - An interactive program allows you to change or
modify the behavior of that program while it is running.

Interface Board- A hardware device that does the actual data
transfer from the computer to the terminal.

Interface Driver - A machine language program that transfers
data back and forth between the interface board and the terminal.

Interpreter - Reads each line of a BASIC program and performs
all the commands on that line as it reaches them. See Compiler.

ISAM - An acronym for Indexed Sequential Access Method. It
is an AMOS utility program for organizing and maintaining a large
group of data.

Job - The structure AMOS uses to connect you, the user, to
itself and to accept the data you enter via one of the system
terminals.

Job Control Block (JCB) - An area allocated for each job within
the operating system, maintaining specific information about the
job.

Job Priority - May be increased from the normal allotment
(usually 1/60 of a second) of CPU time dedicated sequentially to
each job for processing that job's current tasks. Increasing the
job priority allots more time per sequence to that job and decreases
the user's overall waiting time for the task to be finished.

Job Scheduling - A method of organizing jobs in a timesharing
system, where the computer must keep track of what each job
wants, provide a portion of that service, and go on to the next job
many times per second.

Key- The item in a file record you want to sort the file by.

Language Processor - A program that can understand and
act upon commands in one of the various computer languages.

Unefeed - A key used primarily to allow you to move the terminal
cursor down one line. It is usually marked with a down-arrow or
LINE-FEED. Some programs use it for specific functions, such
as single-stepping. The linefeed character is also used as a
delimiter for BASIC data records.

LlNK- See Linkage Editor (LINK).

Unkage Edltor(LlNK) - A program that ties separate assembly
language program modules together and resolves references
modules make to each other.

Glossary

Unked File - A file whose records are not necessarily near
each other on the disk, but are linked together by references in
each record. Also called a sequential file.

LISP - Acronym for LISt Processing. A computer language
especially useful for processing non-numeric computations.

List File - A file comprised of ASCII code, having the extension
. LST. It usually contains text that is formatted and ready for
presentation.

Logging In - Performing the sequence of events that tell AMOS
that you are a legitimate user of the system and have an account
:and password if required). .

Logical Record - Where data is grouped within a file regardless
::>f the physical sector sizes of the disk.

Loop - A routine to execute one or more instructions repeatedly.
The instructions are the same-in each repetition, but the data on
",hich they operate is not.

Machine Language- The set of binary symbols and the instruc
tions for combining them in a way that can be directly processed
DytheCPU.

MACRO - The Alpha Micro macro-assembler program which
translates assembly language mnemonics to machine language
:::ode.

Magnetic Tape Unit - A permanent storage device accessible
::>y the computer which drives a magnetically sensitive tape on
'eels at high speeds.

MAP Statement- In BASIC, a data-handling capability most
)ften used to define groups of variables which are transferred in
~nd out of disk files.

Master File Directory (MFD) - Contains a list of all user ac
~ounts (PPNs and associated passwords) that have files on the
jisk. The MFD also stores the disk address of each account's
Jser File Directory. See User File Directory(UFD).

lIIemory - 1. The ability to store one or more bits of data electric
~lIy over a period of time. 2. Temporary data storage on a computer
;ystem.

lIIemory Allocation - The process of assigning memory to jobs
)y setting up memory partitions or user partitions.

lIIemory Bank - The logical grouping of memory locations into
;eparate, numbered sets. Different banks can contain the same
iddresses, but the system can reference each bank indepen
jently. Allows the memory management option to make possible
he use of more than 64 K of memory on one system. See Address
ng Limit. See Memory Management.

lIIemory Location - The physical location of a given byte of
nemory, which is permanently assigned an address relative to
he beginning of memory (e.g., address 0 is the first byte of
nemory).

lIIemory Management- The technique of organizing memory
vhere you can meet the needs of the operating system, resident
)rograms and several jobs, using several times the amount of
nemory the CPU can normally address in a way that is transparent
otheCPU.

G-S

Memory Mapping - A method of keeping track of which areas
of memory are in use, and which are available.

Memory Module - A file that is copied into a user partition is a
memory module. The term is used to differentiate a file in memory
from a file on the disk. Memory Partition or User Partition -
That area of memory reserved for one particular job; can be any
where in nonsharable memory .

Memory Re-allocation - Using AMOS commands, you as the
System Operator can re-allocate memory to the various jobs.

MFD - See Master File Directory (MFD).

Microcomputer - A general term for relatively small systems
using a CPU based around a microprocessor, usually addressing
8 bits per cycle, or as many as 32 bits. Recent technological
advances empower the microcomputer with computing abilities
competitive with the large, mainframe computers.

Mnemonics - Symbolic names that are arranged to form the
equivalents of machine language instructions. Mnemonics are in
the form of words, rather than numbers, which are easier to re
member. See Assembly Language.

Mode - A way a program or system may operate; implies that
there is at least one other way. For instance, using the shift key of
your terminal takes you out of lowercase mode, pLitting you into
uppercase mode.

Modular Program - A well- structured program broken down
into several sub- programs.

Module - See Memory Module.

Monitor - A term interchangeable with the phrase "Operating
System."

Monitor Call - Any of more than 70 various codings to be
embedded in an assembly language program which allow your
program to access monitor routines. Also known as Supervisor
Call.

Monitor Routine - Any of more than 70 existing programs in
AMOS you can call from within your assembly language program,
rather than writing your own.

MONTST Command - Used after modifying a copy of the System
Initialization command file to test its validity. MONTST is an
abbreviation of Monitor Test.

Mounting Disks - Using the MOUNT command to mount a
disk tells AMOS to read into memory the bitmap for that disk.

Multiprogramming - The ability to have two or more system
users running different programs at the same time.

Multi-user System - The ability of having two or more users
using the same computer system at one time. The computer
switches its attention from one user to another at a very high rate
of speed, giving the appearance to each user that all the comput
er's time is being dedicated to that user.

Multiple Users - See Multi-User System.

Multitasking - The ability of the computer to do two or more
tasks simultaneously for a single user.

G-6

Non-swltchable Memory - The area of memory used by the
operating system and any resident programs.

Numbercrunchlng - A term to describe the computer's ability
to, or the act of doing, progressive numeric computations.

Numbering System - A system by which abstract quantities
can be represented numerically. Each numbering system uses a
different "base number." Each digit- position in a number repre
sents a power of the base number used by the specific numbering
system. In computers, the numbering systems most often used
to represent a given value are base 2 (Binary), base 8 (octal),
base 10 (deCimal) and base 16 (hexadecimal).

Numeric Constant- A number appearing in a program which
does not change value during the processing of the program.

Octal - The Base 8 numbering system where all values are
expressed in relation to 8 or powers of 8.8 (base 10) is written 10
in base 8; that is, 1 *81 (or8) + 0*80 (orO). ,

Offset Value - A value expressing the positioning of an object
or marker in relation to a known position, as opposed to positioning
according to a fixed address.

Operating System - Consists of many machine language pro
grams that provide an interface between you and the computer.

Paper liIpe Reader - An electro-mechanical device which reads
data stored in binary form using holes punched into a roll of
paper tape, and sends that data into the computer for processing.

Parameter - Used synonymously with Argument in our doc
umentation.

PASCAL - A higher-level language which promotes structured
programming, used for both numeric and non- numeric data
handling.

Password - An account can be protected from unauthorized
use by requiring that a user enter a password before being allowed
to log into the account.

PDLFMT - Abbreviation for Program Design Language Format
ting System, the Alpha Micro text formatter that helps you create
a Program-Design Document. It is a very specialized Text for
matter.

Perlpheral- Any device used in association with a computer
which adds to the versatility or the power of the computer to
interface with the outside world.

Permanent Storage Device - Any device that stores binary
data permanently (regardless of whether or not power is applied
to the device). Common permanent storage devices are disks,
magnetic tape, and paper tape.

Personal Computer - A computer used by a single user but
usually severely limited in its expansion capabilities.

Phoenix Disk Drive - A brand of hard disk drive using five fixed
and one removable disk.

Physical Record - The physical sector on the disk.

Glossal]

Pointer - An abstract marker controlled by a program wher
text is affected relative to the pointer. The pOinter is movable i
the text by commands you enter.

Port- See Input/Output Port.

PPN - See Project-Programmer Number (PPN). See Account.

Printer - A peripheral device which types data characters 0
paper under computer control.

Prlntout- A listing or record typed on paper representing dal
processed by a computer.

Priority - See Job Priority.

Procedure - A set of sequential steps to conduct an operatio
upon data. See Program.

Program - A sequence of instructions executed from first 1
last unless explicitly commanded in well-defined ways to brea
the sequence (as in a LOOP). The program is static, but define
the process which the processor, or computer, must perform.

Program Design Language formatting ~m - See PDLFM

Program Execution - The act of running, or performing, th
program.

Program Module - A portion of a program nearly or complete
self-contained as a sub-program.

Program-design Document - A program-design documer
(the output of the PDLFMT program) defines and outlines th
structure of the program you want to construct. Gives you a wei
defined design to follow when coding your program.

Programmable ROM (PROM) - An electronic integrated ci
cuit device acting as memory which can only be written to one
(this is done after its manufacture, via special equipment). Sine
it cannot be written to again, it contains permanent instructior
(e.g., a bootstrap loade~. PROMs retain their instructions wheth4
or not power is applied to the system.

Project-Programmer Number (PPN) - Also known as a
Account Specification or Account Number, it is an octal numrn
which identifies a specific account on a disk.

Prompt - The symbol returned by AMOS or another progral
that indicates that the program is ready for a command to t
entered by the user.

Pseudo 18rmlnal- Whereas normally AMOS requires th
a terminal be assigned to a job, a pseudo (or software controlle
rather than hardware controlled) terminal may be defined
AMOS when a job does not require an actual terminal for inp
or output.

Punch Card - A card with small holes punched in it as a form
permanent data storage.

Quantum - The portion of time in a timesharing system that tt
CPU dedicates to each job before directing its attention to tt
next job. In the Alpha Micro system, it is usually 1/6Oth of a se
ond. The quantum is alterable. See Job Priority.

Queue- A line of objects waiting to be processed. For exampl
the line printer queue.

Glossary

RAD50 Form - A special form of data representation used
internally by the computer that condenses three bytes of ASCII
data into one 16-bit word.

Random - Describes the ability to access anyone of a similar
group of elements without referencing any of the other elements
(e.g., a random-access device).

Random-access Memory (RAM) - A temporary storage device
which can hold data as long as it has electrical power. (Some
types of RAM devices require that the computer refresh the data
within the RAM periodically.) Used as memory by the CPU.

Random File - Also contiguous file. A file whose blocks are
physically adjoined on the disk, which the computer can access
randomly (Le., at any block and in any order) by computing an
offset value from the front of the file. A method of structuring files
which is efficient for data retrieval, but files are not expandable in
length.

Read-only Memory (ROM) - An electronic integrated circuit
device which is encoded with instructions at the time of manufac
ture that cannot be changed afterward. ROM is not dependent
upon electrical power to hold its instructions, and is most often
used to contain initial instructions for system startup procedures
since it reads as quickly as temporary storage.

Reboot - To reset the computer system by causing a new copy
of the operating system program to build itself in sharable
memory. See Booting the System.

Record - See Physical Record.

Re-entrant - Also Sharable Program. A program that can be
used by more than one person, and which must be loaded into
sharable memory to do so.

Reglster- A temporary storage unit which can be used to store
data for reference or manipulation. One register contains one
data word.

Relocatable Code - A program that is independent of an
absolute memory address, and which may be moved within
memory.

Relocatable Program - See Relocatable Code.

Reeet Button - The button on the CPU chassis which resets
the system. See Reboot.

Resident Program Area - That area of system memory AMOS
uses to load resident system programs into.

Resident ~m Program - Any of several re-entrant, sharable
programs which are in the Resident Program Area of sharable
memory.

Rlghthand Justification - The process of aligning the righthand
margin vertically by spacing each line of text in a way that brings
it flush to the margin.

RUN - 1. (as a verb) To perform or to execute. 2. In the BASIC
language processor, the command telling the run-time package
to execute the specified program.

Run Queue - The list of active jobs on the system, maintained
by AMOS.

Run-time Package - The small machine language program
which executes a previously compiled program.

G-7

Screen-oriented Editor - Displays text you are editing on the
CRT terminal screen. Such an editor allows you to modify your
text by moving the cursor to the appropriate position on the screen
and then entering the proper commands.

Sector - A section of a track on a disk

Segment - MACRO allows you to divide large assembly lan
guage programs into modules, called segments. See MACRO.
See Assembly Language.

Sequential File - A file whose records are not necessarily near
each other on the disk, but are linked together by addresses
(links) in each record. AMOS accesses these records in sequence
according to the links. See Linked File.

Sharable Memory - An area of memory on the system, which
contains the operating system. As each job becomes active, it
can access sharable memory.

Sharable Program - See Re-entrant.

Single-ueer System - A small computer system that can only
support one user.

Single-step - The process of stepping through a program one
line of statements at a time.

Skeleton Monltor- A program (SYSTEM.MON) on the System
Disk which runs at system startup to initialize the system and
complete the loading of AMOS.

Software - Programs that control the operation of computer
system hardware. Also, any program available to the computer
that is created by a person.

SORT (data) - The arrangement of data according to a key you
enter. For example, sorting a list of names alphabetically according
to last names.

Source RIe- A file~u create (using a textedito~ which appears
exactly as you type it in. various programs are used to create
different versions of the source file.

Source Program - A program you create (using a language
program or a text edito~ which appears exactly as you type it in.
You can then use another program (see compile~ to process that
program and create a new, executable version of it.

Spooler - As a line printer spooler, a program that allows several
system users to enter requests to print files at the same time, or
one user to print a file while doing another task. More generally,
any program that allows you to insert requests for action into a
queue.

Startup - The process of energizing the system, then loading
in the skeleton monitor that performs the system initialization,
which in turn loads in the complete version of the operating sys
tem to make the system functional.

Step-wise Reflnement- The division of a task into sub-tasks
by the programmer, which are coded as sub-programs. Such a
program is more easily understood than a less well-structured
program.

StrIng Data - Alphanumeric data made up of ASCII characters.

String Subscripting - In BASIC, the ability to excerpt the con
tents of a portion of a string. The substring may be in various
forms in the string. See String Data.

G-8

Structured Program - A program built with the technique of
using sub-programs (enabling people to more easily understand
that program).

Subroutine - A small program found within the confines of a
larger program, which is usually complete within itself.

Sub-sort - A refinement of a sort. For instance, when sorting
by last names, for several entries with the same last name, sub
sorting those by first names. .

Substring - A portion of a string. See String Data

Swltchable Memory - On a system that uses memory man
agement, memory which may be allotted to the various jobs
according to their requirements. No jobs may share the same
switchable memory locations.

Symbol- In a general sense, any item that represents infor
mation. For example, the carriage return character is a symbol
that represents a press of the RETURN key. More specifically, in
assembly language programs, a symbol is a program label or
variable that stands for data or a memory address.

Symbol Table - When using the AMOS debugging program
DDT, instructions in a program which point to relative addresses
when processed can be re-associated to their English names
(which are labels) for easier analysis by the programmer. The list
of these symbols and their relative position within the program
comprise the symbol table.

Syntax - The form that a command or other entry to the computer
must take. This includes correct punctuation and the proper
order of command words.

System Aclmlnlstrator- See System Operator.

System Command - See Command Language.

~ (Compute" - A complete structure of interacting hard
ware and software that work together to provide an integrated
whole.

System Disk - A disk reserved for various system programs of
the Alpha Micro system, including AMOS, the Text Processors
and the Language Processors.

Syalem Initialization - The process of identifying to the Monitor
the hardware configuration, jobs and other parameters unique
to a particular system.

System Initialization Command Flle- See SYSTEM.INI.

System Manager - See System Operator.

~ Operator- A person familiar with the computer system
who is responsible for the maintenance of a particular system,
including initialization, operation and upkeep.

System Queue - A special queue set up by AMOS for its own
use which is built in sharable memory.

System Resource - Any of the available resources on a par
ticular system that may be allocated to a job for its use (e.g., disk
access and printer use).

System Software - The various machine language programs
supplied by Alpha Micro that make up the operating system and
its support. This includes drivers, language processors, text
editors and formatters, and utility programs.

Glossary

SYSTEM.INI- The System Initialization Command File which
contains all the information appropriate to your system config
uration as required by AMOS. This file is accessed at system
startup and reset.

SYSTEM.MON - The program which completes the system
initialization process according to the instructions found in the
SYSTEM.INI file.

Systems Programming - Assembly language programming
that expand the power of the system, typically making use of
monitor calls. Device drivers, terminal drivers and disk access
routines are examples of such programming.

Tape Transport - The Magnetic Tape Unit mechanism which
moves the magnetically- sensitive tape between the reels at high
speeds.

Temporary Storage- Random-Access Memory (RAM) available
to the CPU which can be written to and read from within billionths
of a second, and where data remains while power is applied and
is erased when power is interrupted.

'ntmporary Storage device - Any device supporting RAM of
any type, and attached to a CPU in a way which is accessible.
System memory.

Terminal - A device allowing communication between the
computer and yourself, given the proper interface devices and
programs. Especially a CRT terminal with a keyboard and a tele
vision-like screen, or a hard copy terminal with a keyboard and
an associated printer.

Terminal Driver - A machine language program which translates
data into a form that the terminal can understand.

Text Edltor- A program which, during execution, enables you
to create or modify text you enter via your terminal.

'ntxt File - A file of ASCII data.

'ntxt Formatter - A program which, during execution, reads
commands embedded in the text of a file and, by following those
commands, formats the text a special way and creates a finished
file.

'ntxt Processor Program - In the Alpha Micro system, any
program that enables you to create, modify or format text. See
Text Editor. See Text Formatter.

Timesharing - Several jobs using sequential portions of CPU
time at a speed so quick each job usually appears to the user as
if it were alone on the system.

Timesharing Operating System - An operating system, like
AMOS, which is able to perform timesharing.

Toggle Switch - A device that usually has two positions, and
that can be manually placed in one or the other of the positions.

Tokenlzatlon - The substitution of an abbreviated (usually 1-
byte) symbol for a more memory-consuming BASIC statement.

Track - One of many concentric rings around a disk which are
part of the data storage format 01 the disk.

Glossary

UFD (User File Directory) - See User File Directory.

Unauthorized User- Any user either not permitted on the sys
tem by the System Operator or who cannot give the password to
access a protected account.

User - A general term referring to a programmer, operator, or
any other person who may apply the computer to a task or pur
pose of his or her own.

User File Directory (UFD) - A method of organizing files into
accounts. Each UFD contains a list of all files in a specific account.

User Job - See Job.

User Partition - See Memory Partition.

User-defined Symbol- Any symbol in a program created by a
programmer, such as a label or sub-program name.

UtIlity Routine - One of several programs that perform house
keeping and general usage functions such as file lookup, numeric
conversion or display functions.

G-9

variable - A symbol whose numeric or string value changes
from one repetition of a program to the next, or changes within
each repetition of a program.

Video Display Termlnal- See CRT Terminal.

WE - The Alpha Micro screen-oriented text editor that helps
you create or edit any text file.

Wildcard Symbol- Any of several special symbols (e.g., * or!])
which allow you to select a range of elements using only one
specification. For example, the DI R command recognizes the file
specification *.TXT to mean all .TXT files of any name.

Word Processing - Applying the computer to creating, modi
fying and formatting text documents.

Introduction to AMOS Index-1

INDEX

Account 3-4,5-2,5-3,8-2,12-1 Dataset Driver Block (DDB) 16-2
Account directory 8-2, 16-5
Account number 5-4, 12-1, 16-5

DDT ... 10-10
Debugger ... 10-10

Allocating accounts 16-5
AMOS 1-2 to 1-3, 3-1,4-1

Decimal numbering system 4-2
Device .. 16-1, 17-3

AMOS command language 3-2,3-4,10-2
AMOS command level 3-3, 11-3, 13-3, 17-4

Devicedriver 16-1 t016-2, 17-3
Device independence 3-4, 16-1, 17-1

Argument. 9-4,10-6
ASCII .. 4-3,5-3,9-2

Device table 16-2, 17-2 t017-3
DEVTBL. ... 16-2

Assembler .. 10-8 DING .. 4-3
Assembly language 10-8
ATTACH .. 17-4

DIR ... 8-2
Directory ... 5-4,8-2

Attachingterminalsandjobs 12-1, 15-3, 17-4 Disk .. 5-2,6-1
Account structure 16-5

Backing up data 6-2
Backup ... 5-3

cartridge ... 6-1
Fixed disk .. 6-1

Backup file .. 9-2 I.D. block .. 16-4
Bank switching 14-4, 17-2 Pack ... 6-1
Base 10 ... 4-2, A-1 Platter .. 6-1
Base 16 .. 4-6, A-2 Removable disk 6-1
Base 2 .. 4-2, A-1 Sector .. 6-2, 16-4
Base 8 ... 4-6, A-2 Track ... 6-2,16-4
BASIC 3-2 to 3-4,10-2,10-4,10-5 Disk block ... 5-5
Binary numbering system 4-2,4-5 Disk drive ... 5-2, 6-1
Binary shorthand 4-5 Disk Service System (DSKSER) 11-2, 16-2, 16-3
Bit .. 4-4 DO file 13-1 to 13-2, 13-4
Bitmap ... 16-4, 17-4 Driver ... 15-1
Block .. 5-5, 16-4 DSKO: ... 6-1
Booting the system 6-1, 17-1 DSKANA ... 16-4
Bootstrap loader 17 -2
Breakpoint : 10-6 Echoing characters 15-5
Buffer .. 11-2 EDIT .. 3-3,9-4
Bus ... 2-2 Error message .
Byte ... 4-4 ?Bitmapkaput 16-4

?Memory map destroyed 14-3
Central Processing Unit (CPU) 2-2,4-4 Command Processor 13-3
Character string 9-2 Exec .. 11-3, 12-2
Character- oriented text editor 9-1, 9 -2, 9-4 Expression ... 10-6
Command file 13-1 to 13-2
Command Processor 13-3 to 13-4 File .. 3-4,5-1 to 5-2
Comment. ... 10-10 File Service System (FILSER) 11-3, 16-1, 17-3
COMPIL ... 3-2,10-4 Floating point number 10-5
Compiled program 10-3 Floppy disk .. 6-1
Compiler ... 10-3 FORCE ... 14-6, 17-4
Computer language 10-1 Full duplex mode 15-5
Contiguous file 5-4, 5-6 Function .. ; 10-6
Conversion, binary to decimal. 4-2
Conversion, binary to hexadecimal 4-7 Half duplex mode 15-5
Conversion, binary to octal. 4-6 Hard copy terminal 9-2,11-2,15-2
Conversion, decimal to binary 4-2 Hard disk .. 6-1
CPU .. 17-2 Hardware .. 3-1
CRT terminal 5-3,9-2,11-2,15-2 Hash total .. 8-2, 16-4

Hawk hard disk .. 6-1
Data 4-1 to 4-2, 4-4 HELP .. 8-1
Data bus .. 4-4 Hexadecimal characters A - F 4-7
Data set ... 5-1 Hexadecimal numbering system 4-6

Higher-level language 7-2

Index-2 Introduction to AMOS

IMG: device driver 16-4 Octal numbering system 4-6
InpuVOutput port 2-3.14-2 Operating system 3-1.4-2.11-1
Instruction set ... 3-1
Interface board 15-1 Parallel printer .. 16-1
Interface driver 15-1.17-3 PASCAL .. 10-7
ISAM .. 8-4 Password 12-1.16-5
ISAM data file ... 8-5 PDLFMT ... 9-6
ISAM index file .. 8-5 COmmand .. 9-7

Program design document. 9-7
Job .. 11-3.12-1. 17-3 Peripheral .. 16-1
Job Control Block (JCB) 12-2.17-2 to 17-3 Peripheral device 2-3. 3-4
Job priority ... 12-2 Permanent storage 2-2. 5-2
Job Scheduler " 12-2. 17-3 Physical record 16-4
Job scheduling 11-3 PPN ... 5-4
JOBPRI .. 12-2 Print. ... 10-2

Program•........... 7-1
K symbol .. 4-5 Project library account 13-4
Key ... 8-3. 8-4 Project-programmer number(PPN) 5-4. 16-2. 16-5

PROM .. 17-2
Language .. 10-1 Prompt .. 3-3
Language compiler 10-3
Language interpreter 10-2 Quantum ... 12-2
Language processor 3-4.10-2 Queue .. 14-3
Library account. 13-4
Line printer spooler 12-1.14-2. 15-2. 17-4 Random file 5-4 to 5-6.8-2
LINK .. 10-10 Random-access 5-6. 6-2
Linked file ... 5-4 Random-access memory (RAM) 2-3.14-1.17-2
LiSP .. 10-7 Re-entrantprogram 13-5.14-2.17-4
LOAD .. 13-3 Read-only memory (ROM) 2-3.14-1
Loading file ... 14-1 Relative key ... 8-5
LOG .. 16-5 Relative record .. 8-5
logging in ... 5-4 Relocatable program 13-5. 17-4
Logical I/O Routine 11-2.16-1.17-1 RES.DVR ... 16-3
Logical record 8-3. 8-5. 16-4 Resident Program Area 13-5. 17-4

RUBOUT ... 15-2
Machine cycle .. 4-4 RUN 3-2. 10-3 to 10-4
Machine language 3-1 t03-2. 4-3. 7-1.10-1.10-8 Run queue ... 12-2
MACRO 10-8. 10-10 to 10-13 Run-time package 10-3
Magnetic tape ... 6-2
Magnetic tape unit 5-2 Screen-oriented text editor 5-3. 9-1. 9-2
MAKE command 9-4 Sequential file 5-4.8-2
MAP ... 10-5- Serial printer•....................... 16-1
Master File Directory (MFD) 16-4 to 16-5 Software ... 3-1
MEM.DVR .. 16-3 Source file ... 9-5
Memory 2-2. 5-2.14-1 Source program 10-3
MEMORYO 14-7.17-4 Spooler .. 14-3
Memory allocation 14-6.17-4 Storage .. 4-4
JOBMEM 14-6.17-4 String .. 10-5
MEMORy 14-6. 17-4 Data .. 10-5
Re-allocating memory 14-6 Function .. 10-5

Memory Controller 11-3.14-1 Subscripting .. 10-5
Memory management 3-5.11-3.14-1.14-4.14-6.17-3 Switch ... 4-1
Memory map ... 14-2 Switchable memory 14-4. 17-3
Memory module 14-3 SyMBOL : 10-10
Memory partition 12-2. 14-2 SYSACT .. 16-5
Mnemonic .. 10-9 System Device 6-1.17-3
Monitor ... 3-1.11-1 System Disk ... 6-1
Monitorcall ...•. 11-4 System generation 17-1
MOUNT .. 16-5.17-4 System hierarchy 3-3
Multi-user : 12-1 System initialization 15-2. 17-1
Multiprogramming 3-5 System initialization command file 13-2. 14-2. 17-1
Multitasking 3-4. 12-1. 14-2 System Operator 5-3.14-2.17-4

System Operator's account 5-4
Numeric conversion 11-2 System queue .. 17-4

Introduction to AMOS Index-3

System startup .. 17-1
SYSTEM.lNI 13-2, 17-2

User ... 4-2
User File Oirectory(UFO) 16-5

SYSTEM.MON .. 17-2 User partition ... 14-2
User-defined function 10-6 to 10-7

Tape transport. .. 6-2
Temporary storage 2 -2, 5 -2 Variable ... 7 -2
Terminal 9-2, 11-2, 15-1, 17-3 Video display terminaL 11-2
Terminal definition block 15-2, 17-2 Virtual memory 10-7
Terminaldriver 15-1, 17-3 VUE ... 3-3, 5-3, 9-3
Terminal Service System (TRMSER) ... 11-2, 11-3, 15-1, 16-1 Command mode 9-3
Text ... 5-3,9-2 Prompt character 9-3
Text file .. 5-3 Screen-editing mode 9-3
Text formatter .. 9-5
Text processor ... 9-1 Wait state ... 12-2
Text editor .. 9-1 Word .. 4-4
Text formatter ... 9-1

Timesharing 3-4,11-3,12-1
Tokenization .. 10-3
TRM.OVR .. 16-3
TRMOEF 15-2,16-3
TXTFMT ... 9-5

TECHNICAL PUBLICATIONS FILE REFERENCE

TECHNICAL PUBLICATIONS READERS COMMENTS

We appreciate your help in evaluating our documentation efforts. Please feel free to attach additional comments.
If you require a written response, check here: 0

NOTE: This form is for comments on documentation only. To submit reports on software problems, use Software
Performance Reports (SPRs), available from Alpha Micro.

Please comment on the usefulness, organization, and clarity of this menual:

Did you find errors in this manual? If so, please specify the error and the number of the page on which it occurred.

What kinds of manuals would you like to see in the future?

Please indicate the type of reader that you represent (check all that apply):

o
o

o

Alpha Micro Dealer or OEM

Non-programmer, using Alpha Micro computer for:
o Business applications
o Education applications
o Scientific applications
o Other (please specify):

Programmer:
o Assembly language
o Higher-level language
o Experienced programmer
o Little programming experience
o Student
o Other (please specify):

Introduction to AJ

NAME: _____________________________ DATE: ________ _

TITLE: __ PHONENUMBER: _________________ _

ORGANIZATION: ___ _

ADDRESS: __ ___

CITY: ______________________________________ STATE: _________ ZIP OR COUNTRY: __ _

STAPLE

FOLD

--

alpha mll:rc
3501 Sunflower
P.O. Box 25059
Santa Ana, CA 92799

TECHNICAL PUBLICATIONS

PLACE
STAMP
HERE

--FOLD

t
c:

